
Surgical-site infections remain a significant contributor to hospital-

acquired infections despite continued efforts to reduce their occurrence.

Infection at the operative site is associated with high morbidity,

mortality, and prolonged hospitalization. Typically, in neurosurgical

cases the infection rate varies between 1 and 4%. While antibiotic use,1

enhanced patient homeostasis (e.g. with respect to serum glucose levels

or body temperature), and wound management are appropriate topics

and are analyzed in reviews on the prevention of surgical-site infections,2

pre-operative antisepsis is less frequently considered.3

The rise in antimicrobial resistance makes pre-operative methods to

reduce surgical-site infection even more important,4,5 particularly since

hospitalized patients tend to have a higher frequency of resistant

organisms.6,7 The rise in methicillin-resistant Staphylococcus aureus

(MRSA) infections has made antibiotic prophylaxis of this highly

virulent organism more difficult.8 This article considers the role of 

pre-operative antisepsis, which aims to reduce bacterial density in the

operative site. The development of a sterile surface concept as part of

an approach to reducing surgical-site infection in a neurosurgical

setting is also reviewed. 

Neurosurgery has several unique features associated with the

problem of surgical-site infection: transmissible diseases, hair

removal, and indwelling devices. Transmissible diseases, such as

spongioform encephalopathy, or transmissible viruses represent a

threat to medical staff that is unique to surgery involving the 

central nervous system. As such, a separate focus on procedures 

and management of clinical issues, such as blood exposure and

sterilization procedures, is required.9 However, the same principles

that apply to surgical-site infections generally apply to neurosurgery

as well. The major source of infection is endogenous organisms found

on the patient’s skin,4,10 and the risk for infection is a balance between

patient factors that resist infection and bacterial factors that

encourage infection, i.e. bacterial density at the wound site and

bacterial virulence.11

However, these factors ignore other influences on infection, e.g.

operative time. The relative risk of infection in clean surgeries of less

than two hours’ duration has been shown in a recent study to be

12.6%, and this risk doubles to 24.3% in surgeries of more than three

hours’ duration. Resistance to infection is further compromised by
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the use of implanted devices, since it is generally recognized that the

presence of a foreign material reduces the host’s capacity to 

resist pathogens. 

Hair removal and its influence on the surgical-site infection rate has

been the subject of analysis. While the results are inconclusive in

deciding whether hair removal is necessary, it is clear that hair removal

with a depilatory agent or with clippers results in a lower surgical-site

infection rate than hair removal by shaving.12

The use of known categories of surgical classifications, e.g. ‘clean,’

‘clean-contaminated,’ ‘contaminated,’ and ‘dirty,’ has long provided a

mechanism by which to estimate the risk for infection for a given

procedure. However, neurosurgery is sufficiently different that a

modified system of infection classification appears justified.13 In patients

beyond the neonatal period (where repair of neural tube defects

appears to represent a unique category of patient), the presence of

implanted synthetic materials supports the separation of this group 

of patients from ‘clean’ surgical cases due to a significantly higher

infection rate. 

It has been recognized for decades that reactions to implanted materials

within the central nervous system are identical to reactions seen

elsewhere in the body, with the addition of gliosis in the central nervous

system superimposed on the more typical healing response that leads to

fibrosis.14 Similarly, the prevention, diagnosis, and management of

infections associated with implanted devices provide challenges similar

to those faced with orthopaedic or cardiovascular devices.15 The risk 

for infection is inversely related to host response, and the ability to resist

infection is greatly diminished by the presence of a device. 

Both in vitro16,17 and in vivo18 analyses have indicated that the presence of

a foreign material results in a localized immune defect that significantly

reduces the host’s ability to respond to pathogens. Infection by atypical

pathogens of low virulence is commonly associated with immune-

compromised patients,19 which further supports the theory of a localized

immunologic defect at the site of an implanted device. 

As is the case with implanted materials in other sites, the use of

prophylactic antibiotics or antibiotic-coated materials has been

considered. Analysis of prophylactic antibiotics indicates that protection

against infection can be conferred for the 24-hour peri-operative period,20

but is not of any apparent value beyond that time-frame. In a single

observational study, there was no benefit with the use of antibiotic-coated

devices within the central nervous system.21 However, there has been an

association between bacterial density on the skin and subsequent

infection of cerebrospinal fluid shunts,22 consistent with the principle that

the risk for infection is proportional to wound bacterial content. 

By reducing contamination of the wound, 3M™Ioban™2 could reduce the

infection rate due to surgeries of long duration, especially if implantation

of synthetic materials is to be carried out. Such a reduction would be

consistent with published data on the 10-fold reduction in wound

contamination in orthopaedic surgery attributed to 3M™Ioban™2 use23—

a reduction that can be observed with the use of standard iodine-based

pre-operative antisepsis.24
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MDR = multidrug-resistant; MRSA = methicillin-resistant Staphylococcus aureus; MRSE = methicillin-resistant Staphylococcus epidermidis; VRE = vancomycin-resistant enterococcus.

Figure 1: Time-dependent In Vitro Kill Rate, Expressed in Logarithms of Colony-forming Units Killed, for an
Antimicrobial-impregnated Incise Drape (3M™Ioban™2) 
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Reduction of skin flora is customarily achieved by the use of broad-

spectrum antiseptics. However, the response to antiseptic agents can

be highly individual in nature,25 and it is also the case that no antiseptic

agent is capable of removing all organisms.3 In the absence of a known

‘minimum’ acceptable density of organisms, a reduction in number of

bacteria at the wound site to as low a number as possible is indicated.

Since bacterial adherence is a pivotal step in subsequent device-related

infection,26–28 providing a sterile surface by using incise drapes also

appears beneficial.

Current evidence supports the use of a sterile incise drape with

antimicrobial impregnated into the adhesive as a mechanism to reduce

the risk for surgical-site infection. Assessment of the efficacy of a

subset of currently available surgical incise drapes was carried out in

vitro.29 The results are illustrated in Figure 1 for the antimicrobial-

impregnated incise drape (3M™Ioban™2).

For the time-dependent in vitro kill rate, expressed in logarithms of

colony-forming units (CFU) killed, for an antimicrobial-impregnated incise

drape (3M™Ioban™2), values are given as an average ± 1 standard

deviation. Staphylococcus aureus and Staphylococcus epidermidis, both

methicillin-resistant, are accentuated by enclosure (see Figure 1). 

The adhesive surface of the test sample is inoculated with 50μl of a

bacterial suspension (containing 5x108 [±0.5 log] CFU/ml) by dispensing

10–12 droplets across the surface. The petri dishes are covered and

incubated at 35±2°C for 30 minutes plus one minute; 60 minutes plus

two minutes; and 90 minutes plus two minutes (timing starts on contact

with the total inoculum volume). 

At the appropriate time, the sample is transferred to a blender jar

containing 100ml of Difco™ D/E neutralizing broth. Samples are blended

for two minutes at low speed. After blending, serial 10-fold dilutions in

phosphate-buffered water are plated for each dilution in duplicate, the

plates incubated, and colonies counted after 48 hours of culture (72

hours for fungal organisms).30

In a published study on the role of endogenous microflora on

neurosurgical-site infections, no relationship was observed between

bacterial density before or after skin antisepsis and subsequent infection.31

3M™Ioban™2™ was used in all surgical cases. In a prospective study,32

bacterial densities were measured using 3M™Ioban™2™ without

disinfection prior to surgery and compared with bacterial densities with

standard antisepsis (Betadine). 3M™Ioban™2™ reduced the bacterial

density on the skin, although to a lesser extent than the standard

antiseptic agents. The data indicate that 3M™Ioban™2™ reduced the

bacterial skin count (measured as CFU) by approximately 0.70 logs. Figure

2 illustrates the relationship between the post-antisepsis and pre-

antisepsis bacterial densities, given as CFU (data courtesy of Dr E Larson).

Six hundred and one patients underwent craniotomy using iodophor

antisepsis.31 Fifty-eight patients had only Staphylococcus epidermidis

remaining on their skin after antisepsis. 

At present, the accepted antisepsis level of a given product is

determined by the tentative final monograph on antiseptic products.33

The characteristic behavior of an antiseptic appears as the diagonal line.

Every data point below and to the right of the diagonal line indicates that

antisepsis was acceptable by current definitions. This situation is

illustrated using circles. Failure to achieve acceptable antisepsis 

is illustrated using squares. 

The amount of bacteria necessary to lead to a prosthetic infection can be

estimated34–36 at 2 logs (100 CFU), and any value that equals or exceeds

this number is illustrated with a filled symbol. As indicated, 22 patients

(4%) failed to undergo acceptable antisepsis and 42 patients (7%) had

residual bacteria on their skin in excess of 200 CFU. Using the results

described, the application of 3M™Ioban™2™ reduces those individuals

who have in excess of 2 logs of Staphylococcus epidermidis on their skin

to 19 (3% of all patients), effectively reducing those subjects with

sufficient organisms to lead to a prosthetic infection by half. 
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Figure 2: Colony-forming Units Before and 
After Antisepsis 

Figure 3: Operative-site Image Demonstrating 
Use of a Sterile Surface Associated with the
Antimicrobial-containing Incise Drape 
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Clinical neurosurgical experience supports the utility of 3M™Ioban™2™.

For eight years it has been a standard approach to uniformly use

3M™Ioban™2™ for both spinal surgery and the implantation of

electrodes into the subthalamic nucleus for Parkinson’s disease (see

Figure 3). In a series of 125 patients given a bilateral implantation for

Parkinson’s disease in the subthalamic nucleus, 250 electrodes were

implanted and no infections of the intracranial electrodes were noted

after a median survey time of more than one year. Given that 

the duration of the operation was approximately four hours, it is 

clear that additional protection beyond the use of wide-spectrum

antiseptics becomes necessary to maintain a lower risk of surgical-

site infection by reducing the cutaneous flora. Similarly, between 

January and June 2009, 182 patients underwent disc repair, and there

has been one case of discitis, yielding an infection rate of 0.54% (GKN,

unpublished data). 

Conclusion
As with other device-related infections, meticulous surgical methods

must be coupled with a process of infection reduction, which can be

improved by the production of a sterile surface. The risk for surgical-site

infection is proportional to the number of residual bacteria at the wound

site, so a reduction in skin bacterial density will be associated with 

a concomitant reduction in surgical-site infection. In any situation, a

randomized prospective clinical study generally carries the highest

evidence of proof of efficacy of a given treatment regimen. However, in

the presence of low infection rates, sample sizes become too large for

such a study and the decision to use a given agent must rest on other

information. The cumulative in vitro and in vivo evidence related to

wound contamination and extensive clinical experience with implanted

neurosurgical devices illustrate the utility of using 3M™Ioban™2 as part

of an infection prevention regimen within neurosurgery. n

Surgery
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