
High-grade glioma (HGG) is the most common type of primary 

brain tumor in adults and accounts for >75% of the estimated 22,070

newly diagnosed malignant primary brain tumors in the US each 

year.1 More than half of HGGs are glioblastoma (GBM), the most

aggressive subtype. The remainder include anaplastic gliomas (AGs),1,2

such as anaplastic astrocytoma (AA), anaplastic oligodendroglioma

(AO), and anaplastic oligoastrocytoma (AOA), and rarer subtypes. 

HGG is incurable and is responsible for a disproportionate share of

cancer-related morbidity and mortality.3 With optimal treatment,

median survival is only 12–18 months for GBM and two to five years 

for AG. There have been recent advances in elucidating the molecular

pathogenesis of HGG, which may provide additional prognostic

information and lead to more effective treatments.4–10 This article

summarizes the standard treatment of adult HGG with a particular

focus on recent therapeutic advances.

Standard Treatment Options for 
High-grade Glioma
Surgery for High-grade Glioma
Maximal surgical resection is recommended in all newly diagnosed HGG

patients. Although a surgical cure is impossible, benefits of resection

include improvement of symptoms related to mass effect, reduction of

tumor volume,11 and removal of the necrotic tumor core, which may be

resistant to radiation therapy and poorly accessible to circulating

chemotherapy. Mounting evidence suggests that a near gross total

resection confers a modest survival benefit compared with biopsy or

subtotal resection.12–14 Surgery may be considered in recurrent HGG

patients with good performance status when the tumor is accessible,

symptomatic, and distant from eloquent areas. Surgical resection in the

recurrent setting may improve quality of life and allow time for

additional therapy, but the impact on overall survival is negligible. 

Radiation Therapy for High-grade Glioma
Radiation therapy (RT) has the biggest impact on overall survival for HGG

of all standard treatment modalities. The addition of RT to surgery for GBM

increases median survival from three to four months to approximately 

12 months.15,16

Many variations of standard RT have been investigated in an attempt 

to increase efficacy, including using doses >60Gy, altered fractionation

schemes, brachytherapy, stereotactic radiosurgery (SRS), and the 

use of radiosensitizing agents. None of these has demonstrated

additional benefit over standard fractionated RT.17,18 Newer approaches

including chemotherapy,19 targeted molecular agents,20 and anti-

angiogenic agents21 may potentially work synergistically with RT and

improve outcomes.

Additional involved-field RT is rarely offered to patients with recurrent

HGG, as doses >60Gy offer marginal benefit and an increased risk for

radiation necrosis.22 Small non-randomized studies have demonstrated a

survival benefit for HGG patients treated with SRS at recurrence.23

However, many of the data are subject to selection bias, and this
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approach is not routinely utilized. Fractionated stereotactic RT has also

been evaluated for treatment of recurrent HGG, but its efficacy is 

also unproven.24

Chemotherapy for Glioblastoma
Temozolomide has replaced nitrosureas as the standard of care 

for treatment of newly diagnosed GBM, based on the results of a 

phase III study conducted by the European Organization for Research

and Treatment of Cancer (EORTC) and the National Cancer Institute of

Canada (NCIC) in newly diagnosed GBM comparing RT alone (60Gy over

six weeks) with RT and concomitant daily temozolomide (75mg/m2/day),

followed by adjuvant temozolomide therapy (150–200mg/m2/day for

five consecutive days every 28-day cycle, for six cycles).16 The addition

of temozolomide to RT increased median survival compared with RT

alone (14.6 versus 12.1 months; p<0.0001). Recently, updated results

from this study showed that the added survival benefit with

temozolomide was maintained, even at five years.25

An established mechanism of temozolomide resistance is based on

DNA repair through O-6-methylguanine-DNA methyltransferase (MGMT),

an endogenous DNA-repair enzyme that removes alkyl groups from

DNA and thus confers resistance to temozolomide and other alkylating

agents. MGMT promoter methylation has been shown to predict

temozolomide sensitivity in GBM.6,26 In a companion study to the EORTC/

NCIC, tumor specimens were evaluated for methylation status of the

MGMT gene promoter.6 As predicted, the benefit of temozolomide was

significantly increased in patients with MGMT promoter methylation.

Among GBM patients with MGMT promoter methylation who were

treated with temozolomide, median survival was 21.7 months and two-

year survival 46%. Temozolomide-treated patients with unmethylated

MGMT promoters had a significantly shorter median survival of only 12.7

months and a two-year survival of 13.8%.6 Because this study was

conducted retrospectively in a relatively small sample of patients,

temozolomide remains the standard of care for newly diagnosed GBM

patients, regardless of MGMT promoter methylation status. A

randomized phase III trial sponsored by the Radiation Therapy Oncology

Group (RTOG 0525) will definitively evaluate the utility of MGMT

promoter methylation in determining temozolomide sensitivity. In the

future, patients whose tumors have unmethylated MGMT promoters

may be offered alternatives to the standard temozolomide regimen.

Investigational approaches to overcome MGMT activity include dose-

intense temozolomide regimens27,28 or continuous dosing,29 which may

deplete the enzyme,30 and combination therapy with O6-benzylguanine

or other MGMT inhibitors.31–33

An alternative to systemic chemotherapy involves the surgical

implantation of carmustine-containing biodegradable wafers (Gliadel)

into the resection cavity following tumor debulking. A double-blind,

randomized phase III trial demonstrated a modest benefit in patients

with newly diagnosed GBM. Those patients who received radiation and

placebo had a median survival of only 11.6 months compared with 13.9

months for patients who received radiation and carmustine wafers, 

with median overall survival of 11.6 and 13.9 months, respectively

(p=0.03),34 resulting in approval of this therapy by the US Food and 

Drug Administration (FDA). The benefits of traditional cytotoxic

chemotherapy have been modest in the treatment of recurrent GBM.

Phase II trials of temozolomide for recurrent GBM demonstrated

radiographic response rates (RR) of only 5% and six-month progression-

free survival (PFS6) of about 21%.35,36 However, the recently published

RESCUE study showed that continuous dosing of temozolomide at

50mg/m2 daily rather than the conventional 5/28 schedule had

favorable efficacy and was well-tolerated as a second-line agent.29 Other

agents, such as carmustine, carboplatin, etoposide, irinotecan and

procarbazine, lomustine (CCNU) and vincristine (PCV), produce low

response rates and no significant survival benefit.37 In selected patients

with recurrent GBM who can undergo resection, carmustine implants

produce a modest survival advantage of approximately eight weeks.38 In

light of the limited data, treatment decisions for patients with recurrent

GBM must be made on an individual basis. Factors to consider include

tumor histology, prior therapy, time to relapse, and performance status.

In general, patients with recurrent disease should be enrolled in clinical

trials whenever possible.

More recently, clinical trials in recurrent GBM have focused on 

agents targeting important pathways involved in gliomagenesis and

progression. Most notably, angiogenesis inhibitors have changed the

treatment of recurrent GBM and will be discussed in greater detail

below. Bevacizumab is a monoclonal antibody that selectively binds

vascular endothelial growth factor (VEGF), an important mediator of

angiogenesis. Favorable initial results of bevacizumab in recurrent

GBM led to two phase II trials containing bevacizumab monotherapy
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Table 1: Summary of Therapeutic Options for 
High-grade Glioma

Setting Histology Recommended Treatment Options

Newly Diagnosed Tumor*

Glioblastoma • RT with concomitant and 

adjuvant TMZ

• Clinical trial enrollment

Anaplastic • RT with concomitant and 

astrocytoma** adjuvant TMZ

• RT with adjuvant TMZ

• Clinical trial enrollment

Anaplastic • RT alone

oligodendroglioma or • RT with concomitant and 

oligoastrocytoma** adjuvant TMZ

• RT with adjuvant TMZ or PCV only

• TMZ or PCV alone

• Clinical trial enrollment

Recurrent Tumor**

Any • Clinical trial enrollment***

• Surgical resection, re-irradiation or 

SRS for selected candidates

• Carmustine wafers

• Chemotherapy (TMZ, carmustine, 

lomustine, others)

• Bevacizumab with or without 

chemotherapy (irinotecan, others)

*Treatment should always begin with maximal surgical resection when possible. 
**No standard of care has been defined. ***Clinical trial enrollment should be offered to
recurrent malignant glioma patients whenever possible.
PCV = procarbazine, lomustine (CCNU), and vincristine; RT = radiation therapy; 
SRS = stereotactic radiosurgery; TMZ = temozolomide.
Source: Wen and Kesari, 2008.3
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arms, which demonstrated an RR of 28–35% and PFS6 of 29–42%.39,40

Bevacizumab monotherapy was well-tolerated with a low incidence of

intracranial hemorrhage (0–2.4%) and thromboembolism (8.4–12.5%).

Based on the results of these trials, bevacizumab was granted

accelerated FDA approval in May 2009 for recurrent GBM. Although

several phase II studies have demonstrated improved PFS with

bevacizumab for recurrent GBM, its impact on overall survival

remains unknown.

The previous practice of combining other cytotoxic agents, such as

lomustine, carboplatin, and etoposide, with bevacizumab for recurrent

GBM that progresses despite bevacizumab and irinotecan has recently

been challenged by a study that showed that these regimens have

marginal efficacy.41 Table 1 summarizes the standard therapeutic

options for GBM.

Chemotherapy for Anaplastic Glioma
Due to the paucity of randomized clinical trials, there is no consensus in

terms of treatment of newly diagnosed AG. The recent Randomized Phase

III Study of Sequential Radio-chemotherapy of Anaplastic Glioma With PCV

or Temozolomide (NOA-04) that randomized patients with AG to initial

radiation followed by chemotherapy (temozolomide or PCV) at progression

or initial chemotherapy followed by radiation at progression showed no

difference in PFS between the two groups, regardless of histology.42

Commonly used adjuvant regimens for AA following biopsy or surgery

include RT with temozolomide (using a similar regimen to GBM) or RT with

adjuvant temozolomide only. An ongoing randomized phase III trial of

radiation versus radiation plus temozolomide in non-1p/19q co-deleted AG

patients may provide further guidance on management of AA. 

Tumors with oligodendroglial components, including AO and AOAs, are

less common than AA. However, they have a better prognosis than

pure astrocytic tumors and may have increased sensitivity to

treatment.43 The majority of AOs and 14–20% of AOAs have deletions of

chromosomes 1p and 19q43 due to an unbalanced translocation of 19p

to 1q.44 Tumors with 1p/19q co-deletion are particularly sensitive to

PCV chemotherapy4,45 and likely have sensitivity to temozolomide, 

with an increase in response rate from 34 to 59% in one study.26 The

value of PCV chemotherapy in combination with RT for newly

diagnosed AO/AOA has been evaluated in two large phase III trials.46,47

Although neither study showed an overall survival benefit, patients

treated with both RT and PCV chemotherapy had 10–12 months 

of additional PFS compared with RT alone. As previously mentioned,

the NOA-04 trial that randomized AG patients to initial radiation or to

initial chemotherapy (PCV or temozolomide) did not demonstrate a

difference in PFS, regardless of treatment.42 In all of these studies,

1p/19q co-deletion and MGMT status were associated with marked

survival prolongation. 

As most published studies in AO/AOA were initiated prior to 2005, the

majority of available data involve PCV chemotherapy. Although 

the NOA-04 study was not powered to directly compare PCV and

temozolomide, no PFS difference was observed between patients

randomized to initial PCV versus initial temozolomide,42 although

temozolomide may be associated with less toxicity than PCV.43

Several large intergroup trials are under way evaluating the optimal

combination of RT and temozolomide in patients with newly

diagnosed AO/AOA.
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Figure 1: Aberrant Pathways in High-grade Glioma and Selected Targeted Agents

VEGF: afibercept

EGFR: erlotinib, gefitinib, lapatinib,
vandetanib, BIBW 2992
PDGFR: imatinib, cediranib, dasatinib,
pazopanib, sorafenib, sunitinib, tandutinib,
vatalanib
VEGFR: cediranib, dasatinib, pazopanib,
sorafenib, suntinib, vandetinib, vatalanib
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EGFR = epidermal growth factor receptor; ERK = extracellular signal-regulated kinase; HDAC = histone deacetylase; HGF = hepatocyte growth factor; HSP90 = heat shock protein 90; 
MEK = methyl ethyl ketone; mTOR = mammalian target of rapamycin; PARP = poly (ADP-ribose) polymerase; PDGFR = platelet-derived growth factor receptor; PI3K = phosphatidylinositol 
3-kinase; PKC = protein kinase C; PTEN = phosphatase and tensin homolog; RTK = receptor tyrosine kinases; SF = scatter factor; VEGFR = vascular endothelial growth factor receptor. 
Source: Quant EC, Wen PY, Neuroimaging Clin N Am, 2010;20(3): in press.
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Experimental Therapies 
Targeted Molecular Therapies
With improved understanding of the pathways that drive gliomagenesis,

targeted molecular therapy has emerged as an important treatment

paradigm in HGG in the upfront and recurrent setting. Many

investigational drugs target signal transduction pathways involved in cell

proliferation, growth, survival, adhesion, motility and differentiation.48

Targets of particular importance include receptor tyrosine kinases (RTK)

such as vascular endothelial growth factor receptor (VEGFR), integrins,

epidermal growth factor receptor (EGFR), platelet-derived growth factor

receptor (PDGFR), and cMet. RTKs may be inhibited extracellularly by

monoclonal antibodies (mAb) and intracellularly by tyrosine kinase

inhibitors (TKIs). Inhibitors of intracellular signaling molecules are also

being developed against downstream signaling targets such as

phosphatidylinositol 3-kinase (PI3K), Akt, mammalian target of rapamycin

(mTOR), Raf, and methyl ethyl ketone (MEK). Figure 1 is a schematic of

these pathways. 

Anti-angiogenic Therapies
Vascular Endothelial Growth Factor Pathway Inhibitors
Angiogenesis is important to the growth and proliferation of HGG and is

mediated through several pathways, most notably VEGF.49–51 Higher

levels of VEGF expression are observed in more malignant tumors. 

Targeting VEGF and VEGFR has been the focus of many recent clinical

trials. As noted above, bevacizumab has shown promising activity in

recurrent GBM and is now FDA-approved for this indication.40,52,53 Phase

II studies of bevacizumab plus irinotecan have also demonstrated

efficacy in AG with an RR of 55–66% and PFS6 of 56–61%.54,55

Bevacizumab is generally well-tolerated, with the most common side

effects being fatigue, hypertension, and proteinuria. Less common

serious side effects include thromboembolism, hemorrhage, and

bowel perforation. 

There is emerging evidence that inhibitors of angiogenesis may work

synergistically with RT.21 Two large multicenter trials evaluating the

efficacy of adding bevacizumab to RT and temozolomide in newly

diagnosed GBM patients are under way. Phase II studies of the regimen

appear to be safe despite a possible increase in wound-healing

complications.56 Treatment of HGG with bevacizumab combined with a

variety of targeted molecular agents is being studied as well.52

Another VEGF-pathway inhibitor currently in clinical trials for HGG is

aflibercept (a VEGF decoy receptor that consists of a VEGF receptor

fused to an immunoglobulin constant region).57 In addition to

inhibitors of VEGF such as bevacizumab and aflibercept, there are

many small-molecule TKIs directed against VEGFR. Cediranib is an

oral pan-VEGFR inhibitor that also has activity against platelet-

derived growth factor (PDGFR) and c-Kit. In a phase II clinical trial for

recurrent GBM, cediranib achieved a promising RR of 27% and PFS6

of 26%.58 As had been noted in the bevacizumab studies, there was a

striking steroid-sparing effect, and the drug was well-tolerated. 

Other multitargeted VEGFR agents include vandetanib (VEGFR and

EGFR), sorafenib (VEGFR, Raf, c-Kit), sunitinib (VEGFR-2, PDFR, c-kit

and Flt-3), pazopanib (VEGFR, PDGFR, c-Kit), XL184 (VEGFR and 

c-Met), and CT322.59

Unfortunately, the benefits of anti-angiogenesis therapy are transitory,

and it has been suggested that the impressive radiographic responses

observed in patients treated with bevacizumab may be the result of

decreased permeability of the vasculature rather than a true antitumor

effect (see Figure 2). Mechanisms of resistance to anti-angiogenic

therapy are beginning to be elucidated.60,61 Some pre-clinical data

suggest that blockade of VEGF-mediated angiogenesis may promote

tumor infiltration by co-option of native vessels.62–65 In recurrent HGG

patients who are treated with anti-angiogenesis agents, tumor

progression is occasionally radiographically observed as an increase

in non-enhancing hyperintensity on T2-weighted or fluid-attenuated

inverse recovery (FLAIR) magnetic resonance imaging (MRI). Some

hypothesize that this may represent infiltrative tumor growth.66–70

Due to the lack of assessment of non-enhancing tumor and other

limitations with the standard Macdonald et al. criteria, the multi-

disciplinary Response Assessment in Neuro-Oncology (RANO) Working

Group recently proposed updated response criteria for HGG.71 In

addition, levels of basic fibroblast growth factor (bFGF) and stromal-

derived growth factor 1 alpha (SDF-1α) increased in GBM patients when

tumors escaped treatment with cediranib.72 These findings imply that

one may overcome resistance to anti-angiogenic agents by combining

anti-VEGF/VEGFR therapy with agents that target tumor invasion, non-

VEGF-pro-angiogenic signaling pathways such as the FGF pathway, or

vasculogenic pathways such as the SDF-1α pathway. 
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Figure 2: 56-year-old Woman with Left Parietal
Glioblastoma Showing Response to Therapy with XL184 

XL184 is a vascular endothelial growth factor receptor and Met inhibitor. A: Axial T1 with
contrast before therapy; B: Axial fluid-attenuated inverse recovery (FLAIR) before therapy; 
C: Axial T1 with contrast four weeks after therapy showing partial response; D: Axial FLAIR four
weeks after therapy showing significant reduction in peritumoral edema.

A B

C D
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Integrins
The αvβ3 and αvβ5 integrins are cell-surface receptors that promote

endothelial cell migration and survival during angiogenesis.73

Cilengitide (EMD121974) competitively inhibits αvβ3 and αvβ5. Phase II

trials showed a PFS6 of 15% and a median OS of 9.9 months when

cilengitide was added to RT and temozolomide. Patients with

methylated MGMT promoter had better responses.74 Based on the

favorable results of this trial, a multicenter phase III trial is under way

using cilengitide in patients with newly diagnosed GBM with

methylated MGMT promoter.

Receptor Tyrosine Kinases
Epidermal Growth Factor Receptor Inhibitors
EGFR is the most commonly altered RTK in HGG.75 Approximately 20–30%

of GBM have a constitutively active EGFR mutant known as EGFRvIII, and

all of these EGFRvIII-expressing tumors also exhibit EGFR amplification or

overexpression.76 Signaling through these and other growth factor

receptors activates fundamental signal transduction pathways such as

the Ras/mitogen-activated protein kinase (MAPK) pathway and the

PI3K/Akt/mTOR pathway, both of which promote cell proliferation.10

Additionally, many of these pathways upregulate VEGF.49,77

While subsets of GBM patients have sustained responses to reversible

TKIs that target EGFR, to date the studies have been largely disappointing.

Studies of erlotinib (EGFR), gefitinib (EGFR), and lapatinib (ErbB2/HER2,

EGFR) have failed to demonstrate any significant survival benefit

compared with historical controls.78–86 The combination of EGFR inhibitors

with other therapies is discussed later in this article.

Potential reasons for lack of response include poor blood–brain barrier

penetration, insufficient local tumor concentrations, coactivation of

multiple TKIs,87 redundant signaling pathways, and resistance. Irreversible

EGFR inhibitors, such as BIBW 2992 and PF-00299804, could have better

efficacy in GBM than gefitinib or erlotinib due to increased potency and

better brain concentration. This newer class of EGFR inhibitors has been

shown to circumvent mechanisms of response to gefitinib or erlotinib in

non-small-cell lung cancer cells.88–93

mAb and vaccines that target EGFR are currently under investigation in

GBM. Both nimotuzumab and cetuximab, a chimeric anti-EGFR

human–mouse mAb, are now being studied in combination with RT and

temozolomide as upfront GBM therapies. Preliminary results from a

phase II clinical trial suggest that the addition of CDX-110, a peptide-

based EGFRvIII vaccine, to standard therapy prolongs survival in

patients with newly diagnosed GBM.94 However, since patients were

required to have gross total resections and EGFRvIII mutation in order

to be eligible for the trial, they represent a highly selected group with

good prognosis.

Platelet-derived Growth Factor Inhibitors
Platelet-derived growth factors (PDGF) are a pleiotropic family of

peptides that signal through PDGFR to stimulate cellular functions

including growth, proliferation, and differentiation.95 Imatinib mesylate

(Gleevec), an inhibitor of PDGFR-α and β, Bcr-Abl, c-Fms, and c-Kit

tyrosine kinases, demonstrated activity in pre-clinical models of glioma.96

However, in clinical trials neither imatinib monotherapy97,98 nor imatinib in

combination with hydroxyurea (a ribonucleoside diphosphate reductase

inhibitor)99 has demonstrated clinically useful activity in GBM. One

explanation for the lack of efficacy is that imatinib is a substrate for the
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Table 2: Selected Novel Therapies

Type Therapy
Surgical Convection-enhanced delivery (e.g. cintredekin

besudotox, anti-TGF-β, antisense AP 12009, PRX321 (IL-4

linked to Pseudomonas exotoxin)

Overcoming Dose-dense TMZ

resistance MGMT inhibitors (e.g. O6-benzylguanine, lomeguatrib)

to TMZ PARP inhibitors (e.g. BSI-201, ABT-888)

Novel e.g. ANG1005, RTA744

chemotherapies

Anti-angiogenic Anti-αvβ5 integrins (e.g. cilengitide)

therapy Anti-hepatocyte growth factor (e.g. AMG-102)

Anti-VEGF (e.g. bevacizumab, aflibercept [VEGF-Trap])

Anti-VEGFR (e.g. cediranib, vandetinib, pazopanib

sorafenib, sunitinib, XL184, CT-322, IMC-1121B)

Others (e.g. thalidomide)

Targeted Akt (e.g. perifosine, MK2206)

molecular Bcl2 (AT101)

therapy EGFR inhibitors (e.g erlotinib, gefitinib, lapatinib, 

BIBW 29992, PF00299804, nimotuzumab, cetuximab)

FTI inhibitors (e.g. tipifarnib and lornafarnib)

HDAC inhibitors (e.g. vorinostat, depsipeptide, LBH589)

HSP90 inhibitors (e.g. 17AAG, IPI504)

Insulin-like growth factor receptor (OSI906)

Met (e.g. XL184)

mTOR inhibitors (e.g. everolimus, sirolimus, temsirolimus, 

AP23573)

PI3K inhibitors (XL765)

PKCβ (e.g. enzastaurin)

PDGFR inhibitors (e.g. dasatinib, imatinib, tandutinib, 

IMC3G3 (Mab against PDGFR-alpha)

Proteosome (e.g bortezomib)

Raf (e.g. sorafenib)

Src (e.g dasatinib, bosutinib [SK606])

TGF-β (e.g. AP12009)

Combination therapies:

Erlotinib + temsirolimus

Gefitinib + everolimus

Gefitinib + sirolimus

Sorafenib + temsirolimus, erlotinib, or tipifarnib

Pazopanib + lapatinib

Bortezomib + vorinostat

Vandetinib + sirolimus

Cediranib + cilengitide

Immunotherapy Dendritic cell and EGFRvIII peptide vaccines, monoclonal 

antibodies (e.g 74I-anti-tenascin antibody) (CDX110) 

Gene therapy Delta-24-RGD-4C

Cerepro

Therapy directed Notch inhibitors (MRK0752, R4929097)

against stem cells Sonic hedgehog inhibitor (GDC-4409)

Miscellaneous 74I-TM-601

EGFR = epidermal growth factor receptor; FTI = farnesylytransferase; HDAC = histone
deacetylase; HSP90 = heat shock protein 90; MGMT = methylguanine-DNA-methyl transferase;
mTOR = mammalian target of rapamycin; PARP = poly (ADP-ribose) polymerase; PDGFR =
platelet-derived growth-factor inhibitor; PI3K = phosphatidylinositol 3-kinase; PKC = protein
kinase C; RT = radiotherapy; TMZ = temozolomide; TGF= transforming growth factor; TMZ =
temozolomide; VEGFR = vascular endothelial growth factor receptor.
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P-glycoprotein efflux pump that limits its intracranial distribution.100

Tandutinib and dasatinib, second-generation PDGFR inhibitors with

improved CNS penetration, are in clinical trials for recurrent HGG. 

c-Met Inhibitors
Scatter factor/hepatocyte growth factor (SF/HGF) and its TKR c-Met play

a role in cell growth, cell motility, morphogenesis, and angiogenesis.101

AMG 102 is a fully human monoclonal antibody that selectively targets

SF/HGF. A phase II study of AMG 102 in recurrent GBM was recently

completed but failed to produce any benefit.102 A recent study suggests

that the combination of EGFR inhibitors and c-Met inhibitors may be

more effective than either agent alone in phosphatase and tensin

homolog (PTEN) null GBM.103 Trials of c-Met TKIs such as XL184 are under

way in GBM.

Intracellular Signaling Kinase Inhibitors
As activation of several RTKs, including EGFR and PDGFR, converges at

the Ras/MAPK and PI3K/Akt pathways, inhibiting these downstream

molecules may be more efficacious than targeting individual RTKs.

In the Ras/MAPK pathway, potential targets include Raf, MEK, and

farnesyltransferase. An early step in activation of the Ras/MAPK

pathway is localization of Ras to the cell membrane, which depends on

Ras farnesylation by the enzyme farnesyltransferase. Farnesyltransferase

inhibitors (FTIs) such as tipifarnib104 showed modest activity as

monotherapy in recurrent HGG and are now being studied in

combination with temozolomide for HGG. 

The Raf serine/threonine kinases are the main downstream effectors of

Ras in the MAPK pathway. Sorafenib is an inhibitor of c-Raf kinase, but

also inhibits pro-angiogenic RTKs including VEGFR-2, VGFRR-3, PDGFR-β,

Flt-3, c-Kit, and FGFR-1. Several trials of sorafenib in HGG are under way,

although the preliminary results have been disappointing.

Several PI3K and Akt inhibitors are in development or early clinical trials.

XL765, an inhibitor of PI3K and mTOR, is currently in a phase I clinical

trial in combination with temozolomide for HGG. Studies of XL147 and

BKM120 are planned. Akt inhibitors undergoing evaluation in HGG

include perifosine and MK2206. 

mTOR, a downstream molecule in the PI3K/Akt pathway, is also an

attractive target for therapy.105 The mTOR inhibitor sirolimus (rapamycin)

and its analogs temsirolimus, everolimus, and ridaforolimus are the

most clinically advanced PI3K/Akt pathway inhibitors. Despite promising

results from pre-clinical studies, temsirolimus monotherapy was not

clinically active in recurrent GBM in two multicenter phase II clinical

trials,106,107 possibly because inhibition of only the TORC1 component

may result in the activation of Akt. An Akt inhibitor, such as perifosine

or MK2206, or a combined PI3K/mTOR inhibitor, such as XL765, may

ultimately prove more effective. Studies combining mTOR inhibitors with

other targeted agents are discussed below.

New Molecular Targets
Histone Deacetylase Inhibitors
Histone deacetylase (HDAC) inhibitors cause the growth arrest,

differentiation, or apoptosis of many transformed cells by altering

transcription of various genes.108 Vorinostat is a small-molecule inhibitor of

most human class I and class II HDACs. Vorinostat demonstrated

moderate clinical activity in a phase II study of patients with recurrent GBM

with a PFS6 of 15.2%.109 The Adult Brain Tumor Consortium and the North

Central Cancer Treatment Group are now jointly conducting a trial of

vorinostat with RT and temozolomide in patients with newly diagnosed

HGG. Clinical trials combining HDAC inhibitors with other agents such as

bortezomib, a proteosome inhibitor, or bevacizumab are currently under

way in recurrent GBM. A more potent HDAC inhibitor, LBH589, is entering

phase II studies in recurrent GBM.

DNA Repair
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that signals 

the presence of DNA breaks and facilitates DNA repair by engaging

mechanisms such as base excision repair (BER).110 As PARP inhibitors

disrupt BER, an important mediator of TMZ resistance, these agents may

enhance the antitumor effects of temozolomide against HGG. Two PARP

inhibitors, BSI-201 and ABT-888, are being tested in combination with

radiation and temozolomide for newly diagnosed GBM.

Glioma Stem Cells
Glioma stem cells (GSCs) are believed to represent a subpopulation of

cells in the tumor with the ability to self-renew, proliferate, and give 

rise to progeny of multiple neuroepithelial lineages.111 They may

contribute to treatment resistance in HGG.112,113 Stem cells are predicted

to be difficult treatment targets because they transition slowly through

the cell cycle, express high levels of drug-export proteins, and may not

express oncoproteins that are targeted by newer chemotherapeutic

drugs.112 As a result, there is significant interest in molecular therapies

affecting stem-cell pathways, such as notch (e.g. MRK0752 and

R4929097), sonic hedgehog (e.g. GDC4409),111,112,114 and hypoxia-inducible

factors 1 and 2α.113

Overcoming Resistance to 
Targeted Molecular Therapy
Monotherapy with most targeted molecular agents (except for anti-

VEGFR agents) has shown modest activity at best. These results are not

surprising when one considers that most HGG have co-activation of

multiple tyrosine kinases87 and highly redundant signaling pathways.

Approaches now under evaluation in clinical trials include the

combination of a targeted agent with radiotherapy and chemotherapy,

the combination of several targeted agents and agents that hit multiple

relevant targets at once.10,20,115,116 For example, the EGFR inhibitor erlotinib

has been studied in combination with mTOR inhibitors, such as

sirolimus117 and temsirolimus.118 Although preliminary results from these

erlotinib combination studies suggest only modest efficacy due to poor

tolerability,118,119 other combinations may be better tolerated and are in

clinical trials. There is also continued interest in clinical trial designs that

incorporate tissue specimens to identify biomarkers to predict tumor

response to target inhibition.120,121 This may allow identification of

patients who are more likely to respond to specific therapies. Advances

in molecular profiling of tumor tissue may lead to more selective use of

targeted molecular agents and tailoring of therapy to individual patients.

A recent study demonstrated that GBM can be subdivided by genomic

profiling into four subtypes, each of which demonstrates unique

molecular alterations.122
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A prominent mechanism of resistance to targeted molecular therapy is

inadequate drug delivery across the blood–brain barrier. Increasingly,

trials of novel targeted agents include a surgical component to evaluate

the ability of the drug to reach therapeutic concentrations in the tumor

and inhibit the putative target. Patients with recurrent HGG were

administered the agent prior to planned surgery and the tumor is

obtained for drug concentration and evidence of pathway inhibition.123 If

drug concentration and target inhibition in the tumor is poor, further

evaluation of that agent in HGG is probably not warranted.120

Other Therapeutic Modalities
A large number of therapeutic modalities are being explored for HGG.

Examples include inhibitors of the ubiquitin-proteosome system such

as bortezomib,124–126 heat-shock protein inhibitors,127,128 cytokines,129 gene

therapy,130 synthetic chlorotoxins (TM-601),131 chemotherapeutic agents

with enhanced ability to penetrate into tumor tissue, and convection-

enhanced delivery (CED) of drugs and toxins.132 Intracavitary TM-601,

the synthetic version of a chlorotoxin found in the venom of the giant

yellow Israeli scorpion, is under evaluation in a phase II study. Agents

administered directly into HGG via CED that have been studied in phase

III clinical trials include interleukin-13 (IL-13), Pseudomonas aeruginosa

exotoxin, and transferrin-C diphtheriae toxin. Unfortunately, both trials

were terminated for futility after interim analysis.133 By contrast, studies

of trabedersen (AP1007), a phosphorothioate antisense oligonucleotide

against transforming growth factor β2, appears to have activity in

recurrent AG and is being evaluated in a phase III study. Therapy

involves the insertion or modification of genes in a patient’s cell to treat

a disease.134 Transfer of ‘suicidal’ genes via viral vectors such as herpes

simple virus thymidine kinase gene (HSV-tk) has demonstrated only

limited survival benefit in several clinical trials for recurrent GBM.134

Viral vectors can also deliver pro-apoptotic cytokines such as tumor

necrosis factor-related apoptosis-inducing ligand (TRAIL) and p53 as

well as cytokines such as IL-2 and interferon beta (IFN-β). Other

methods of delivery under investigation include cell-based transfer and

synthetic vectors. 

Antitumor vaccines based on peptide antigens, dendritic cells, or whole

tumor cells represent another major avenue of investigation. Among the

many promising vaccines in addition to the previously described 

CDX-110 are GVAX, which involves administration of irradiated

autologous tumor cells mixed with granulocyte macrophage colony-

stimulating factor (GM-CSF)-producing cells135 and vaccines against

HSP90.136 In small phase II studies, these vaccines appear to be well-

tolerated and show promising efficacy compared with historic controls.

However, larger prospective controlled studies will be required to

confirm any clinical benefit. Table 2 summarizes selected novel

therapies for HGG.

Conclusions
Despite progress in recent years, the prognosis for most patients with

HGG remains poor. The introduction of temozolomide to radiation

treatment was an important advance, and anti-angiogenic therapy has

now emerged as a critical component of treatment for recurrent

tumors. Thus far, the potential of targeted molecular drug therapy has

not been fully realized. Future approaches include the use of treatment

regimens that inhibit complementary targets, combinations of targeted

molecular drugs with RT, chemotherapy, and anti-angiogenic therapies,

and novel agents directed at tumor stem cells. Additionally, the

understanding of glioma biology and treatment resistance is evolving at

a rapid pace. Genome-wide association studies are just beginning to

uncover mutations that will lead to better characterization of HGG.

Therapeutic strategies for circumventing treatment resistance mediated

by MGMT and PARP as well as the intrinsic resistance of glioma stem

cells are beginning to be developed. n
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