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Abstract
Cognitive impairment after critical illness (CIACI) is a frequent consequence of serious disease or injury that has been reported in as many 

as 66 % of patients, 3 months after an illness requiring intensive care unit hospitalisation. The condition has been recognised only within the 

past 15 years and its pathological mechanisms are, as yet, incompletely understood. The neurological changes and cellular and inflammatory 

processes of CIACI overlap with those of stroke, traumatic brain injury and neurodegenerative disorders. Patients also show brain atrophy, 

which worsens with the duration of intensive care unit stay. Risk factors associated with CIACI include depression, biomarkers of Alzheimer’s 

disease (e.g. apolipoprotein E), delirium, exposure to some drugs (e.g. fentanyl, morphine and propofol) and intubation. Current strategies 

to prevent or treat CIACI include treatments to reduce agitation and delirium and physical and mental rehabilitation including cognitive 

therapy. Many brain diseases and injuries affect the functioning of the neurovascular unit (NVU), which constitutes the key cellular building 

block of the blood–brain barrier (BBB). CIACI is believed to affect the integrity of the NVU and it is among the potential targets for therapy. 

Neurotrophic factors (NTFs), such as brain-derived neurotrophic factor (BDNF) are known to play an important role in neurogenesis, 

maintenance of NVU structure and neuronal repair after disease and injury. This led to the development of strategies including the 

NTF-preparation (Cerebrolysin®), which is effective as a post-stroke therapy and has potential in the treatment of Alzheimer’s disease and 

brain injury as well as CIACI. There are currently no proven treatments for CIACI; improved understanding of the condition and further 

evaluation of NTFs may lead to effective treatments, which are vital to tackle this increasingly serious public health problem.
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Cognitive impairment (CI) is frequently associated with critical illness and 

can be defined as the loss or decline of higher mental functions (memory, 

attention, calculation, language, orientation and speed of information 

processing) that modify a person’s activity and social interaction. CI 

is additionally defined as self- and/or informant-reported involving 

decreased ability on cognitive tasks and/or preserved basic activities  

of daily living/minimal impairment in complex instrumental functions. 

Decline in cognitive functions can have an evolving course. The patient 

has the ability to perform daily living activities, except those that require 

complex cognitive instruments. Long-term cognitive impairment after 

critical illness (CIACI) is an emerging medical concept that was first 

described in 1999 in a report of a cohort of 55 patients with acute respiratory 

distress syndrome (ARDS) among whom 78 % had CI (decreased memory, 

attention and concentration or lower mental speed) at 1 year.1

This article aims to outline the current knowledge of CIACI and  

to present a hypothesis of novel treatment to prevent CIACI based on 

relevant research and clinical data. The authors overviewed the major 

clinical features of CIACI. We have also outlined the probable underlying 

pathological mechanisms as well as endogenous biological defence 

processes that are the potential targets for novel treatments. Finally, 

we overviewed current therapeutic approaches as well as proposed a 

new treatment strategy based on the hypothesis that an intervention 

at the neurotrophic regulation level could potentially address both 

neuroprotection and neurorepair in the critical care period and beyond, 

counteracting and/or preventing development of CIACI. The recently 

published data indicating that delirium is an independent risk factor of 

CIACI2 suggests that this group of patients might benefit from timely 

administered preventive therapies. 

Major Clinical Features of CIACI
Incidence
In various studies, CI is has been reported as a frequent consequence 

of critical illness.3 One example was a large prospective cohort study 
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of 821 patients with respiratory failure or shock, conducted in the US.1 

The occurrence of delirium during hospitalisation was assessed by the 

Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) 

and overall cognition and executive function at 3 and 12 months after 

discharge using the cognitive test battery RBANS (Repeatable Battery 

for the Assessment of Neuropsychological Status) and Part B of the Trail 

Making Test, respectively. This revealed that 66 % of patients had CI at 

3 months. Among these, 40 % had global cognition scores compatible 

with mild CI and 26 % had scores well matched with mild dementia. 

Deficit occurred in both older and younger patients and persisted, with 

rates of 34 % and 24 % on assessments at 12 months. 

Underlying Pathology
There is an incomplete knowledge available regarding underlying 

pathological events in the development of CIACI. Here, only a few 

important aspects of this complex topic are highlighted. Studies of brain 

pathology in critical illness have focused mainly on sepsis-associated 

observations.4,5 Post-mortem studies in people who had septic shock 

demonstrate cerebral oedema, ischaemic lesions, haemorrhage, 

microthrombi, microabscesses and leukoencephalopathy (see  

Figure 1).6,7 These abnormalities point to and overlap with those 

described after stroke and traumatic brain injuries and in various 

neurodegenerative disorders.8–11 A significant apoptosis is also 

observed in central nervous system (CNS) sectors with activity related 

to autonomic cardiovascular function.6,7 These findings suggest the 

existence of another underlying mechanism of circulatory collapse in 

sepsis probably mediated by brain damage.

Animal models using lipopolysaccharide challenge, proinflammatory 

cytokine administration or caecal ligation provided evidence of 

altered blood–brain barrier (BBB) function and entry of inflammatory 

mediators into the CNS. They also showed activation of brain innate 

and adaptive immune systems12 and induction of neuronal and glial 

dysfunction and death.13 These processes are accompanied by the 

expression of toll-like receptors and tumour necrosis factor (TNF) 

receptor-1, which are of major importance to amplifying peripheral 

inflammatory signals within the brain.14

Brain Imaging
Recently, the lack of neurological images of patient populations in 

ICUs has been addressed in several clinical studies. One of these, the 

VISualizing ICU SurvivOrs Neuroradiological Sequelae (VISIONS) study 

was a prospective observational trial that analysed the association 

between duration of delirium, brain volumes and CIACI.15 Patients 

with a longer duration of delirium showed greater brain atrophy at 

hospital discharge and 3 months follow-up and were associated with 

worse cognitive performance at 12 months. Smaller superior frontal 

lobes, thalamus and cerebellar volumes at 3 months were associated 

with worse executive functioning and visual attention at 12 months 

(see Figure 2). Longer durations of delirium were also associated with 

disruption of white matter in the knee and in the splenium of the corpus 

callosum and the anterior end of the internal capsule at discharge (see 

Figure 3). Lower fractional anisotropy in the front end of the internal 

capsule at discharge and corpus callosum knee at 3 months were 

associated with poorer cognitive scores.16

In another study, the structural changes in brain imaging and cognitive 

outcomes were retrospectively evaluated in a cohort of 64 critically 

ill patients who developed neurological changes during their ICU 

stay.17 CIACI occurred in 48 % of survivors who had abnormalities on 

X-ray computed tomography (CT) and in 64 % of them with lesions 

detected on magnetic resonance imaging (MRI). Lesion location was 

heterogeneous. The study included 19 patients with white matter 

hyperintensities, which the American Heart Association believes 

should be interpreted as silent infarcts.18

Figure 1: Post-mortem Stained Sections of 
Subcortical Frontal Brain Area of a Patient 
with Septic Encephalopathy Necrosis, 
Vasocongestion and Microbleeds

Sections were haematoxylin- and eosin-stained. Source: Courtesy Dr S Figurelli, 
Pathology Unit, Fernández Hospital. 

Figure 2: Nuclear Magnetic Resonance Images 
of Brain from a Patient with CIACI 3 Months 
after Discharge from Intensive Care Unit

Images show multiple hyperintensities on T2 and fluid attenuation inversion recovery 
images compatible with silent infarct, atrophy and increased ventricular volume. Source: 
personal data, unpublished images. CIACI = cognitive impairment after critical injury.

Figure 3: Fractional Anisotropy (Tractography) 
by Nuclear Magnetic Resonance Imaging of 
the Same Patient at 3 Months after Discharge 
from the Intensive Care Unit

Fibre disruption of corpus callosum (arrows), reduction of the fibres of the superior 
longitudinal fascicles cingulate bundles and optical radiation with left dominance. 
Magnetic resonance diffusion tractography is a method for identifying anatomical 
connections in the living human brain. Diffusion is the spread of molecules in a fluid due 
to constant thermal motion. The extent of this spread depends on the diffusivity of the 
medium. In brain white matter, tissue consists of bundles of myelinated axons. In such 
tissue diffusion progresses more slowly than it would in water. Hence, by measuring 
diffusion along many directions and observing that it is faster in one direction than in 
others, we can deduce the direction of the fibre bundles at every point in the brain.  
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Patient-associated Risk Factors of CIACI
Depression
Some data suggest that depression in the post-ICU period is associated 

with CI.19–23 This was emphasised in a cross-sectional study of 102 

long-term survivors of ARDS, in which 66 % had psychiatric symptoms 

(depression, anxiety or post-traumatic stress disorder) and concomitant 

CI was significantly associated with these symptoms (p=0.04).24 An 

analysis of 109 survivors of ARDS at 3, 6 and 12 months after ICU discharge 

using the 36-item Short-Form General Health Survey (SF-36) showed that 

scores for general health, vitality, social functioning and mental illness 

were low and remained low at 1 year.25 Longer duration of mechanical 

ventilation and delayed recovery of organ failures predicted worse 

Beck Depression Inventory (BDI-II) score in the following 5 years.26,27 A 

systematic review of 14 studies on depression in critical-illness survivors 

found that one out of three patients had moderate to severe symptoms 

of depression and early onset of depression at discharge, and there was 

a high risk of later depressive symptoms.28

Apolipoprotein E4 and Other Markers of 
Alzheimer’s Disease
The detection of biomarkers used in Alzheimer’s disease (AD), such 

as apolipoprotein E (APOE), may be helpful in identifying patients with 

increased risk of cognitive changes after surgery and hospitalisation in 

the ICU.29 One study found that the presence of APOE4 had a stronger 

association with delirium duration than age, severity of illness, sepsis or 

use of benzodiazepines30 although this association was not supported 

by other studies.2

Independent Risk Factors of CIACI
Delirium
Delirium is an acute change in mental status with fluctuating course 

characterised by inattention, disorganised thinking or altered states 

of consciousness. It is very common in acute disease and has been 

reported in 74 % of patients with a critical condition. The longer duration 

of delirium is an independent risk factor for CI and impaired executive 

function at 3 and 12 months after discharge from ICU.2

To date, no single cause of delirium has been identified. Known risk 

factors include advanced age, pre-existing CI, drugs (especially 

benzodiazepines and anticholinergics), sleep deprivation, hypoxia, 

metabolic abnormalities and history of alcohol or drug abuse. Several 

theories have been proposed to explain the development of delirium, 

most of which are complementary (see Table 1).31

Drug Exposure
ICU patients are likely to receive multiple pharmacological agents, 

many of which can interfere with nerve function. Benzodiazepines 

(mainly midazolam and lorazepam), for example, are widely used for 

sedation in those receiving mechanical ventilation. A cohort study of 

198 patients with mechanical ventilation found that lorazepam was an 

independent risk factor for delirium. Fentanyl, morphine and propofol 

were associated with an increased but non-significant risk of delirium. 

In addition, increasing age and Acute Physiology and Chronic Health 

Evaluation II (APACHE II) scores were also independent predictors in 

the transition to delirium (p<0.05).32 The BRAIN-ICU Study,2 however, 

showed that use of sedatives or analgesics was not consistently 

associated with CI at 3 and 12 months. Drugs with potential central 

anticholinergic effects (tricyclic antidepressants, H2 blockers, opiates, 

furosemide and benzodiazepines) may affect neurotransmission 

and cause delirium but have been reported to affect only short-term 

outcomes in mechanically ventilated ICU patients.33–36

Current Protocols for Prevention and 
Treatment of CIACI
Pain, Agitation and Delirium Prevention
Strategies for pain, agitation and delirium prevention in the ICU with sedation 

suspension protocols, spontaneous ventilation assays, early mobility and 

sleep hygiene programmes are associated with significant improvements 

in performance and reduced cost of care. This ‘delirium care bundle’ is 

detailed in the Society of Critical Care Medicine’s 2013 guidelines.37

Physical and Mental Rehabilitation
In patients with dementia, exercise is associated with increased 

cerebral blood flow, neurogenesis and brain volume, which could be 

linked with improved cognitive level. These effects are also shown in 

severe head trauma survivors, based on the principles of neurological 

compensation or neurological restoration. Such findings suggest that 

the human brain recovers from injury to differing extents.38

A review performed by the Institute of Medicine and Emergency Care 

showed that cognitive rehabilitation therapy is effective for improving 

some of the deficits associated with traumatic brain injury (TBI), but overall 

Table 1: Hypotheses Proposed to Explain the Development of Delirium during and after  
Critical Illness

Hypothesis Function
Oxygen-deprivation hypothesis Reduction in oxidative metabolism causes brain dysfunction due to anomalies in neurotransmission systems

Neurotransmitter hypothesis Reduced cholinergic function, dopamine excess and noradrenaline and glutamate release, reduced or  

increased serotonergic activity and gamma-aminobutyric acid could cause symptoms that appear to resemble 

those of delirium

Neuronal-ageing hypothesis Elderly are at greater risk of delirium, probably due to age-related changes in regulating brain neurotransmitter 

systems and intracellular signal transduction

Inflammatory hypothesis Increased brain cytokine release as a result of a wide range of physical attacks leads to delirium, due to effects on 

various neurotransmission systems 

Physiological-stress hypothesis Trauma, serious illness and surgery can alter blood–brain barrier permeability, cause euthyroid sick syndrome, alter 

thyroid hormone concentrations and increase hypothalamic–adrenal axis activity. These can alter neurotransmitter 

and cytokine release leading to delirium

Signalling hypothesis Fundamental processes such as intraneuronal signal transduction may be disturbed, affecting neurotransmitter 

synthesis and release 

Source: Maldonado, 2013.31
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the evidence was insufficient to determine the full therapeutic value of 

this therapy.39 Two small but conclusive trials showed the importance 

of cognitive rehabilitation in critical care. The Returning to Everyday 

Tasks Utilising Rehabilitation Networks (RETURN) study40 was a single-

site, randomised trial of 21 general medical/surgical ICU survivors (eight 

controls and 13 intervention patients) with either cognitive or functional 

impairment at hospital discharge. At 3-month follow-up, patients who 

received in-home cognitive, physical and functional rehabilitation 

demonstrated significantly improved cognitive executive functioning 

compared with controls who received standard care. A multicomponent 

rehabilitation programme for ICU survivors, therefore, may be an effective 

approach to improving cognitive performance and functional outcomes.

In the Activity and Cognitive Therapy in ICU study, 87 medical and 

surgical ICU patients with respiratory failure and/or shock were 

randomised in a 1:1:2 ratio to usual care, early once-daily physical 

therapy or early once-daily physical therapy plus a novel, progressive, 

twice-daily cognitive therapy protocol. Functional- and health-related 

quality-of-life outcomes did not differ between groups at 3-month 

follow-up, but the study demonstrated that early rehabilitation can be 

extended beyond physical therapy to include cognitive therapy.41 

Key Prerequisites for Development of Novel 
Therapies for CIACI
CIACI, together with the age-related dementias and cognitive disorders 

linked to the plethora of other aetiological factors, represents an 

increasing challenge to medicine and the society. In spite of a long history 

of failure in clinical trials, especially in the so-called neuroprotection 

domain, there is a growing understanding of key requirements that 

need to be fulfilled for development of new therapies in neurology. 

Here, we attempt to outline some of these prerequisites:

1. Definition of biologically accurate treatment targets.

2. Identification of suitable/adequate therapeutic agents and regimens.

3. Patient stratification and sound clinical trial design.

Neurovascular Unit as Biologically Relevant 
Treatment Target
Several pathological features and mechanisms preceding or 

accompanying CIACI match those identified in other neurological 

disorders. Accordingly, some of the potential treatment targets can be 

considered the same or similar to those described in vascular dementia, 

TBI and stroke (e.g. prevention of programmed cell death, apoptosis). 

However, we believe that the effective novel therapies must target 

biologically relevant structures and processes, not isolated pathological 

events (e.g. excitotoxicity). The main structural and functional constituents 

of the brain are represented by the concept of neurovascular unit (NVU), 

and the focus of future therapies should be on the protection of NVU as 

well as on ability to stimulate its restoration.

The ‘neurovascular unit’ is a concept linking microvessel and neuron 

function and the responses of these compartments to injury.42 The NVU is 

a dynamic structure assembled by endothelial cells enclosed by a basal 

lamina, and is surrounded by astrocytic end-feet processes, pericytes 

and neurons (see Figure 4).43–46 A key function of the NVU is to regulate 

plasma components and cellular elements of brain intravascular space 

passage. This barrier function, also known as the BBB, is determined 

not only by endothelial integrity but more specifically by a functional 

interaction between endothelial cells, basal lamina and perivascular 

astrocytes.47 Endothelial permeability is restricted by junctional 

complexes gathered by adherents and tight junction (TJ) proteins. 

A set of accessory proteins, known as zonula occludens, links these 

proteins with the cytoskeleton.48 At the NVU, it is primarily TJ proteins 

that confer the low paracellular permeability and high electrical 

resistance that characterise the cerebrovascular endothelium. The NVU 

is prominent throughout the brain, including the grey and white matter. 

NVU dysfunction is involved in several brain conditions, such as stroke, 

vascular dementia, migraine, trauma, all neurodegenerative disorders 

and even normal ageing.48 As discussed earlier, critical illness can 

lead to similar pathological features. Therefore, the maintenance and 

restoration of NVU functions also represent proper targets for potential 

therapies to prevent CIACI.

The Mechanisms of Cell Death and Brain  
Repair are Linked
Brain cell generation, function and death involve four key concepts. 

Neurotrophicity describes cell processes aimed at maintaining correct 

DNA expression and cell/tissue phenotype. Neuroprotection is a short-

or medium-term endogenous neurobiological process that includes 

all the mechanisms directed against harmful factors. Neuroplasticity 

describes the brain’s ability to change existent structures in response 

to environmental stimuli, such as learning, new experiences or injury. 

Neurogenesis is the process by which new nervous tissue cells, such 

as neurons, astrocytes and oligodendrocytes, are formed from stem 

cells.49,50 These processes are simultaneously regulated and integrated 

in both the healthy and diseased brain and can be endogenously or 

pharmacologically activated, allowing patients to overcome insults and 

stimulate recovery.51

The results of reduced neuroplasticity include neuropathic pain, multiple 

sclerosis, tinnitus, movement disorders and obsessive compulsive 

disorder.52 Changes in neurogenesis can also generate pathological 

conditions such as AD (downregulation) and neuroproliferative 

disorders (upregulation).

Excitotoxicity results from excess of glutamate or similar substances. 

When N-methyl-D-aspartate receptors (NMDAR) are stimulated at 

low intensity by calcium, they participate in proteolitic systems, 

affecting neurotrophism and neuroplasticity.50,53 When activated 

in excess (as after an insult), however, they have a destructive role. 

Microglia

Pericyte

Astrocyte Neuron

Tight junctions Astrocyte endfeet

Basal membrane

Oligodendrocyte

Endothelial cell

Figure 4: The Neurovascular Unit

Cerebral endothelial cells form tight junctions that seal margins in the aqueous 
diffusion paracellular pathways between cells. Pericytes are distributed discontinuously 
between capillaries and endothelium. Both are surrounded by a basal lamina that 
forms a different extracellular matrix complex of astrocyte endfeets that surround 
it. The astrocyte plays a major role as a bridge between the neuron and endothelial 
complex, allowing the passage of vasoactive peptides, which regulate vascular dilation 
or constriction. Microglial cells are, functionally, the immunocompetent cell group. 
The movement of solutes across the blood–brain barrier can be passive, by gradient 
of concentration and lipid solubility, or facilitated by active or passive transport by 
endothelial cells. Source: Unpublished diagram.
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Inflammation regulates these processes and therefore affects both 

neuroprotection and neuroplasticity. Therefore, NMDAR can have both 

protective and damaging roles in pathological processes. Apoptosis is 

a positive process (only when controlled), but apoptosis-like processes 

(uncontrolled apoptosis) induced by overactivation of NMDAR are 

always negative and must be addressed in therapeutic interventions.54

We know that in the CNS, all these processes are regulated partly 

by neurotrophic factors (NTFs). Their positive or negative impact 

on NVU depends on the balance between endogenous defence 

activities (EDA) and damage mechanisms (DM) (see Table 2), which 

in turn depend on neurotrophic regulation.50 These considerations are 

important for defining properties/pharmacological profiles of potential  

therapeutic agents.

NTFs as Therapeutic Agents in CIACI
In 1951, Cohen, Levi-Montalcini and Hamburger demonstrated that 

mouse sarcoma could stimulate sympathetic and sensory neuron 

growth, and they isolated nerve growth factor (NGF).55 NGF was shown to 

interfere with oligodendrocyte migration in the CNS and with migration 

of Shwann cells in the peripheral nervous system. This led to a closer 

investigation of specific nervous-system cytokines (brain-derived 

NTF [BDNF], glial-derived NTF [GDNF]), and the investigators were 

awarded the Nobel Prize for this research in 1986.56 The development 

of neurotrophic treatment concept has been well described by Aloe et 

al. 2012 (see Figure 5).57

Neurotrophins (NGF, BDNF, neurotrophin-3 [NT-3] and neurotrophin 4 [NT-

4]) are of interest due to their involvement in the normal development 

of the CNS and in the normal or pathological ageing.58 These factors 

exert their effect through tropomyosin kinase (TRK)-related receptors 

and activation of signalling cascades including Inositol triphosphate-

diacylglycerol (IP3-DAG), Phosphatidylinositol-3 kinase (PI3K)/Akt 

and mitogen-activated protein kinases/extracellular signal-regulated 

kinases (MAPK/ERK). They also interact, with low affinity, with p75NTR, 

a TNF receptor, which, upon activation, leads to apoptosis in neuronal 

and non-neuronal cells.58

The best-studied example to date is BDNF, which was found to be involved 

in almost all stages of development of neural circuits including:59–61

• stem cells’ and progenitors’ survival;

• neurogenesis and neuronal differentiation;

• polarisation and neuronal guidance;

• branching and survival of differentiated neurons; and

• formation and maturation of spines and synapses.

In the mature nervous system, BDNF promotes development 

and refinement of neuronal circuit structure, modulates synaptic 

plasticity and therefore regulates cognitive brain functions (including 

learning and memory). Alterations in BDNF levels are associated with 

neurodegenerative disorders (including AD, Huntington’s disease 

and epilepsy), neuropsychiatric disorders (including depression, 

anxiety disorders, bipolar disorders, schizophrenia and addiction) and 

obesity.62–65 The hallmark of BDNF deficiency is synaptic degeneration, 

and this is consistent with the finding that increased levels of BDNF 

promote synaptic repair in preclinical models. BDNF has a major role 

in regulating survival, growth and maintenance of neurons and has 

an important role in learning and memory processes.66,67 Low levels of 

BDNF have been found in patients with AD and major depression and 

are considered a biomarker of memory disorders, cognitive function 

and increased risk of death in elderly women. BDNF is also decreased 

in type II diabetes. Vigorous exercise increases muscle levels of BDNF 

as well as its cerebrospinal fluid (CSF) levels, showing an autocrine 

and, perhaps, paracrine effect. There is a clear relationship between 

elevated levels of interleukin 6 (IL6), BDNF, exercise and improved 

cognitive function.66–69 BDNF is a highly charged protein that does not 

readily cross the BBB, so effective delivery to the CNS is a challenge.70

GDNF has neuroprotective effects in dopaminergic neuron-cell cultures. 

Mesencephalic astrocyte-derived NTF and conserved dopamine NTF 

are members of an NTF family with specific protective properties on 

dopaminergic neurons. This was shown in 6-hydroxydopamine animal 

models of Parkinson’s disease.71 The family of insulin-like peptides 

(insulin growth factors [IGFs] 1 and 2) are generated within the brain or 

enter the brain through the BBB attached to a low-density lipoprotein-

related protein 1 (LRP1) receptor.72 They concentrate in the hippocampus 

and hypothalamus, exerting regulatory actions on neuronal survival, 

neurogenesis, angiogenesis, inhibitory or excitatory neurotransmission 

and cognition. The tissue level of IGF 1 is therefore an important element 

of healthy nervous tissue; aberrant reduction of IGF 1 may have a role 

in AD.72 Recent investigations have shown a direct relationship between 

IGF 1/2 and myogenic regulatory factors that allow myogenic stimulus 

(hypertrophy, atrophy or repair) and IGF release.73,74 

Natural NTFs seem to be promising molecules for the treatment 

of neurological disorders, especially considering their regulatory 

functions in balancing endogenous cell death and neurorepair 

processes. They are also responsible for maintaining NVU structure 

and functions, but despite these roles, until now no large-scale clinical 

trials of NTFs have been successful.75–77 The pharmacological properties 

of NTFs render them difficult for clinical application. One of the major 

obstacles with the therapeutic use of NTFs is the BBB, which usually 

stops proteins larger than 20 kDa.43,47,78 The problem makes invasive 

application strategies, such as intracerebroventricular infusion, 

necessary. Moreover, in the initial clinical trials, several undesirable 

side effects have been reported (e.g. hyperalgesia, weight loss). The 

development of alternative neurotrophic therapies employing small 

molecules that could mimic NTFs or otherwise stimulate selected 

elements of their signal transduction pathways remains an important 

goal in neurology.

Experimental Neurotrophic Therapies and 
Neurotrophic-like Agents Available for Clinical Use
The category of ‘neurotrophic treatment’ is currently considered 

experimental due to the fact that there is no drug in clinical use that has 

been registered/approved as ‘a neurotrophic treatment’ per se. 

Table 2: Endogenous Defence Activities and 
Damage Mechanisms in Brain Injuries

Endogenous Defence Activities Damage Mechanisms
Neurotrophicity Excitotoxicity

Neuroprotection Free radicals

Neuroplasticity Metabolic dysfunction

Neurogenesis Inflammation

Apoptosis-like process

Protein misfolding

Genetic characteristics

Source: Muresanu et al., 201250 and Enciu et al., 2011.51
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Glatiramer acetate (GA), an immunomodulatory agent approved 

for the treatment of multiple sclerosis, has been shown to interfere 

with neurotrophic signalling,79 although no clear mechanism of action  

has been established for this agent. It consists of randomly synthesised 

mixture of peptides (6.4 kD average size) derived from four amino  

acids that are abundant in myelin basic protein: glutamic acid,  

lysine, alanine and tyrosine. GA is administered peripherally as a 

subcutaneous injection. 

The experimental therapies broadly described as neurorestorative, 

including cell-based and pharmacological treatments, are currently 

in different phases of preclinical and clinical development.80,81 These 

approaches were shown to stimulate angiogenesis, neurogenesis, 

remyelination, cell migration, suppression of apoptotic-like processes 

and recovery of functional NVU. The findings at molecular and cellular 

level translated into improved functional outcomes in various animal 

models of neurological diseases. They were shown to act through 

sonic hedgehog (Shh) and neurotrophic signal transduction pathways, 

which are part of endogenous mechanisms of neuroprotection and 

neurorepair described previously.82–84

Cerebrolysin is another neuropeptide preparation (referred to below 

as ‘the neurotrophic factor preparation’ [NTF-prep]) produced by an 

enzymatic breakdown of purified porcine brain proteins and contains 

a complex mixture of <10 kDa peptides including fragments of ciliary 

NTF (CNTF), GDNF and insulin-like growth factors 1  and 2.85 In the 

experimental models of stroke, TBI and dementia, the NTF-prep acts 

in a similar way to endogenous NTFs but, favourably, it is able to cross 

the BBB. Additionally, it was recently established that the NTF-prep 

amplifies endogenous recovery processes after stroke and TBI as well 

as counteracts neurodegenerative processes in experimental models 

of AD.86–90 In the brain injury models, this action was abolished using the 

selective inhibitor of Shh (cyclopamine), confirming that the NTF-prep 

presents a unique opportunity for developing novel clinical protocols 

along with the mentioned earlier group of experimental neurorestorative 

treatments.90 The NTF-prep displays pleiotropic effects after peripheral 

intravenous administration, acting at the level of NVU, preventing 

neuronal degeneration, restoring neuronal cell structure, increasing 

synaptic density and stimulating neurogenesis and remyelination. 

These pharmacological properties were shown to promote learning 

and memory performance and functional recovery as tested in diverse 

experimental set-ups.91–93 A theoretical advantage of the drug is that its 

pharmacodynamic action lasts from hours to months. The mechanism 

of action of NTF-prep is described in recent reviews.94,95 The NTF-prep is 

approved by National Drug and Food Technology of Argentina for use 

in AD, vascular dementia, stroke and TBI and is also approved in these 

indications in several countries in Latin America, Europe and Asia.

To the best knowledge of the authors, the NTF-prep is the only approved 

drug with neurotrophic mode of action established in extensive 

experimental investigations. We have overviewed major available 

clinical data for this neurotrophic agent to assess its potential for 

Figure 6: Pleiotropic Neuroprotective and 
Neurorestorative Effects of Neurotrophic 
Factor Preparation in Human Brain Damage  
Reported in Stroke, Trauma and Dementia 
Research Models
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Figure 5: The History of Development of the Treatment Concept Based on  
Nerve Growth Factor 
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Figure 7: Time Frame in which DM and EDA are Addressed in Different Critical Care Settings
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prevention/treatment of CIACI. A literature search in PubMed/Medline 

retrieved 289 articles reporting the use of NTF-prep in different fields, 

including 32 randomised control trials. The most important are those 

related to AD and vascular dementias, as well as those investigating 

therapeutic effects in the brain injuries.

NTF-prep in Alzheimer’s Disease and  
Related Dementias
An extensive review on the NTF-prep in AD and vascular dementia96,97 

identified 12 international, multicentre randomised control studies 

investigating the therapeutic efficacy of the NTF-prep in these 

disorders.98–110 These have shown statistically significant and clinically 

relevant treatment effects of the NTF-prep on cognitive, global and 

functional domains in mild to moderately severe stages of dementia. 

A recent Cochrane review concluded that NTF-prep may have positive 

effects on cognitive and global function in elderly patients with 

vascular dementia of mild to moderate severity. It concluded, however, 

that there is insufficient evidence to recommend NTF-prep as a routine 

treatment for vascular dementia due to the limited number of included 

trials, the wide variety of treatment durations and short-term follow-up 

in most of the trials.111

A new meta-analysis of six randomised controlled trials (RCTs) in AD 

confirmed favourable benefits–risks relation of the NTF-prep in mild to 

moderate AD patients treated with a daily dose of 30 ml.103 The analysis 

showed a significant advantage of the NTF-prep in cognitive and global 

endpoints versus placebo, with the number needed to treat (NNT) for 

benefit of 2.9 with respect to the 6-month global clinical change and 

the calculated NNT for harm of 501 with respect to risk (‘patients with 

premature discontinuation due to adverse effects [AE]’). 

NTF-prep in Brain Injuries
An extensive review identified five randomised controlled studies 

investigating the therapeutic efficacy of the NTF-prep in stroke.112–116 

One of these, the Cerebrolysin Acute Stroke Trial Asia (CASTA) study 

included 1,070 patients with acute hemispheric ischaemic stroke.114 

There was no significant difference in modified Rankin Scale, Barthel 

Index and the National Institute of Health Stroke Scale (NIHSS) 90 days 

after stroke onset between patients receiving the NTF-prep or placebo. 

A post-hoc analysis, however, showed a trend in favour of the NTF-prep 

in patients with a NIHSS score >12 (cumulative mortality at 90 days was 

20.2 % in the placebo group and 10.5 % in the treatment group; morbidity 

was lower in the treatment group with an improvement of 4.8 points 

on the NIHSS versus 1.8 points for placebo). In the most recent RCT, 

investigating the cognitive effects of the NTF-prep in mild TBI patients, 

it was found that the acute administration of the NTF-prep resulted in 

the recovery of cognitive deterioration as assessed at 1 month and 

3  months post-injury.117 These results confirmed previous findings118  

and suggest independently that the hypothesis of neurotrophic 

treatment to prevent CIACI deserves dedicated research. Pandharipande 

et al.2 observed that CIACI presents a similar clinical picture to that 

observed in moderate TBI patients suggesting involvement of the 

overlapping pathological mechanisms.

NTF-prep and Safety
Recent comprehensive reviews of NTF-prep in AD analysed safety of 

the treatment in clinical studies with good scientific quality.94,103 All of the 

studies demonstrated the safety of the treatment without significant 

AEs compared with placebo and significant improvements in clinical 

and cognitive function in the groups treated with NTF-prep. Across 

several clinical trials, the AEs produced by NTF-prep were generally mild 

and transient, including dizziness, shaking and feeling hot. Prescribing 

Doses of neurotrophic factor preparation (NTF-prep) for intensive care unit (ICU) phase are as used in strokes and severe traumatic brain injury (TBI) trials (30–50 ml/day for 10 days). 
NTF-prep doses for ward and post-hospital phases are as used in Alzheimer’s disease (AD) and vascular dementia (VaD) (10–30 ml/day for 20 days). Modification from Wilcox 2013.3 
DM = damage mechanisms; EDA = endogenous defence activities; PTS = psychiatric symptoms.
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information warns of hypersensitivity or allergic reactions in <1/10,000 

patients. NTF-prep also appears to be safe when used in combination 

with recombinant tissue plasminogen activator (rtPA) or cholinesterase 

inhibitors, such as donepezil or rivastigmine.100,116

Patient Stratification and Sound Clinical Trial 
Design in CIACI
The growing importance of patients’ stratification in neurology is a 

direct consequence of a few decades of failure in developing effective 

therapies for major diseases. Stratification makes sense even in cases 

where patients’ benefits have been confirmed for a given treatment in 

dedicated RCTs, and approved. For example, only one in seven ischaemic 

stroke patients benefits from treatment with thrombolysis. The key factors 

facilitating stratification of patients’ population are genetic testing and 

increasing use of a variety of biomarkers. It is believed, for example, that 

progress in the treatment of AD depends on the development of markers 

allowing for preventive treatment in the high-risk group of healthy/

mildly affected individuals, long before clinical symptoms of AD can be 

detected. However, additional demographic, clinical and patient-centred 

factors can also make major (and sometimes dominant) contributions to 

development of effective novel clinical protocols.119

In this context, the finding by Pandharipande et al.2 that development of 

CI can be linked to delirium and intubation, as independent risk factors, 

justifies the testing of already available and new treatments in this selected 

group of patients. The pathological features underlying development 

of CI in this group of patients, past experience in clinical development 

in neurology as well as the latest developments in understanding the 

biology of the brain must be taken into account when choosing the most 

appropriate treatment strategy. The authors believe that the available 

research and clinical data point to the neurotrophic approach as a 

compelling therapeutic option for prevention/treatment of CIACI.

Conclusion
CIACI is an example of a pathophysiological mechanism in which 

secondary injury generates neurological lesions in a previously healthy 

brain. This damage can be seen in both pathological2,5–7,12,120 and nuclear 

magnetic resonance (NMR) imaging studies.14–17 Cerebral atrophy, white-

matter hyperintensity and leukoaraiosis are as common in vascular and 

mixed dementia as they are in CIACI, whereas ventricular dilatation and 

atrophy, especially of the hippocampus, are both identified in CIACI and 

AD. This relationship has led some to suggest that increased rates of 

AD are partly driven by the effects of critical illness and its treatment.121 

These findings should be analysed not only in terms of mechanisms 

of cell damage, sources of excitotoxicity, inflammation, necrosis, 

apoptosis, but also in terms of endogenous brain repair processes. The 

context of NVU should be always observed for better understanding 

the condition and, consequently, for devising new treatments.49,50

Longer durations of delirium are associated with worse overall cognition 

and poorer executive function.2 This finding indicates significant progress 

in the critical care patients’ stratification for the improved clinical 

protocols. The hypothesis of delirium generation involves more than 

one DM, and could support the use of pleiotropic therapeutic agents 

(see Figure 6) with neuroprotective and neurorestorative properties.94,122

Current prevention strategies and treatments, including tests of 

awakening and physical and cognitive rehabilitation, are therapeutic 

approaches that promote neuroprotection and neurorehabilitation. The 

endogenous repair processes can be stimulated using arousal methods, 

cognitive stimulation and neuromuscular activity that activate the 

release of NTFs.66–69,72–74,123,124 Neurotrophic agents may be administered 

when a patient arrives at the ICU and during the critical period; their 

pharmacological and physiological properties make them suitable for 

use in the prevention and treatment of CIACI. The time frame of brain 

DMs in critically ill patients and the therapeutic windows of opportunity 

that could be exploited by such a treatment are summarised in Figure 7. 

The increased understanding and recognition of CIACI and advances in 

critical care treatment support the initiation of appropriate randomised 

prospective trials. Such investigations are much needed since there is 

currently no proven treatment for this disease, which is a substantial 

and increasing public health problem. ■
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