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Molecular Imaging in Alzheimer’s Disease

Neurodegenerative dementia has become the most rapidly growing cause

of severe disability in the world. The most important risk factor is old age,

while genetics and lifestyle also contribute. Therefore, better treatment

and effective intervention are urgently needed at an early stage before the

onset of severe disability. This requires further research into the risk

factors and pathophysiological determinants of disease manifestation in

humans and better, specific diagnosis at an early stage before dementia

develops. Molecular imaging can provide the tools to achieve these goals.

Positron Emission Tomography
The most sensitive and accurate method for molecular imaging in

humans is positron emission tomography (PET) and therefore this article

focuses on this technique. It employs minute amounts (in the micromolar

range) of short-lived radioactive tracers. They are labeled with either: 

•   carbon-11 (physical half-life 20 minuntes), which requires a cyclotron

and associated radiopharmacy on site and therefore is not practical

for widespread clinical use; or

•   fluorine-18 (half-life 90 minutes), which allows remote regional tracer

production and delivery to clinical nuclear medicine departments. 

Clinical PET scans typically involve intravenous tracer injection and

subsequent brain scanning for 10–30 minutes at resting state. PET scans

are associated with very low radiation exposure of approximately 5mSv.1

This article discusses imaging biomarkers that are provided by clinical PET

for early diagnosis of disease and monitoring of disease progression.2,3 It

describes the clinical utility of glucose and amyloid scanning. It also provides

a brief overview of current research investigating possible determinants of

disease progression, such as neuroinflammation, and changes in major

neurotransmitter systems and their relation to clinical symptoms.

Amyloid Imaging
The deposition of amyloid-β (Aβ) is an early event in the pathogenesis

of AD and is central in the amyloid cascade hypothesis. The first tracer

to be used to label fibrillary Aβ selectively with high affinity in vivo was

11C-labelled Pittsburgh compound B (11C-PIB).4,5 Many research

studies and recent multicenter studies have demonstrated that this

tracer has a very high sensitivity of 90% for detecting fibrillary amyloid

plaques in patients with Alzheimer’s disease (AD).6–9

The apolipoprotein E (APOE) e4 allele is a genetic risk factor for increased

PIB uptake10–12 and cortical PIB binding is correlated negatively with

abeta42 in cerebrospinal fluid.13–15 Similar results have been obtained 

with quantification of tracer binding by dynamic measurement and by

simplified static imaging protocols recording cortical tracer uptake in a

single scan lasting for 40 to 60 minutes following intravenous injection of
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11C-PIB.16,17 These results demonstrate the robustness and clinical

applicability of the method. The cerebellar cortex, which may exhibit

diffuse but not fibrillary amyloid in AD, is generally used as a reference

region without specific PIB binding.

Most normal control subjects exhibit very low cortical binding of PIB,

with less than 1.5-fold PIB uptake relative to the cerebellar cortex. In

addition, unspecific binding is observed mainly in white matter. A

proportion of normal elderly controls show higher cortical PIB binding,

typically resulting in a bimodal distribution of PIB uptake in samples 

of control subjects. Current studies indicate that the frequency of

increased cortical PIB binding in controls increases rapidly from 10% or

less below 70 years of age to 30–40% at 80 years of age, largely

reflecting similar findings in previous autopsy studies.18 The clinical

implications of Aβ deposition in elderly controls are not yet clear. Some

elderly controls have indicators of the start of neurodegeneration19,20 or

will develop cognitive deficits,21 but cerebral function in others may be

resistant to Aβ deposition. Long-term follow-up studies are currently

under way to clarify this issue.

Findings in patients with mild cognitive impairment (MCI) are

heterogeneous. In most studies approximately two-thirds of patients

showed increased binding, such as AD patients, while the rest were

within normal limits. Published results from follow-up studies indicate

that patients with increased binding are at high risk for progressing to

AD with manifest dementia,22,23 while MCI patients with negative PIB

scans very rarely develop dementia.24 Patients with amnestic MCI show

more PIB binding than non-amnestic MCI.25 Aβ deposition is high in

posterior association areas, where it correlates with a decline in glucose

metabolism. However, it is also high in the frontal association cortex

where that correlation is absent.26

The amount of Aβ deposition and PIB binding is highly variable 

in AD. Despite this, PIB imaging is very sensitive for detection of AD. It

is likely that a significant proportion of the PIB-negative AD patients in

clinical series (up to 10%) will be due to clinical misdiagnoses. Only

under exceptional circumstances has PIB-negativity been confirmed 

in AD.27

Besides APOE e4, additional genetic factors that have not yet been

identified appear to play a role.28 Initital follow-up studies with 11C-PIB

in AD have indicated that there is little further increase in tracer uptake

during progression of the disease.29 Howerver, recent preliminary

results from large multicenter studies (ADNI and AIBL) do indicate

further increase. A decrease in PIB binding has been observed in

patients undergoing clinical trials of drugs that remove Aβ from the

brain,30 but it has not yet been demonstrated that this would be

associated with clinical benefit.

Differential Diagnosis using Amyloid Imaging
Amyloid imaging is expected to provide excellent differentiation of AD

from frontotemporal dementia, which is not associated with Aβ

deposition and increased 11C-PIB binding (see Figure 1).31 Dementia with

Lewy bodies (DLB) often also shows fibrillary Aβ deposition in

pathological studies and correspondingly positive PIB scans are reported

in most patients.32,33 Moderately increased PIB binding, predominantly in

occipital regions and on average less than in AD, has also been observed

in non-demented patients with cerebral Aβ angiopathy.34

Tracers in Clinical Trials
There are currently three 18F-labeled tracers being studied in clinical

trials that have been developed as proprietary tracers for commercial

distribution. These are flutemetamol (GE-067, 3’-fluoro-PIB), florbetaben

(BAY-94-9172, AV-1), and florbetapir (AV-45). They show high-affinity

binding for fibrillary Aβ with Ki <10nM, similar to 11C-PIB, while 

non-specific binding in white matter is higher than with 11C-PIB.

Ongoing research is aiming to develop tracers that show a lower level

of non-specific binding.35,36

Flutemetamol, florbetaben, and florbetapir appear to have largely

similar imaging properties, although the optimum scanning time after

intravenous injection varies. Results from clinical trials indicate that they

will likely provide high diagnostic power for discrimination between AD

patients and controls.37,38 They also demonstrate a close correlation

between the cortical binding of 11C-PIB and 18F-fluoro-PIB in cortical

regions.39 Preliminary results demonstrate a close correspondence of

Figure 1: Amyloid PET and MRI Brain Scans of Normal,
Dementia, and Alzheimer’s Disease Patients 

Normal control

Fronto-temporal dementia

Alzheimer’s disease

Amyloid positron emission tomography scans using florbetapir (with coregistered magnetic
resonance imaging scans), demonstrating low normal cortical uptake in an aged normal 
control and a patient with fronto-temporal dementia in contrast to high cortical uptake in
Alzheimer’s disease.

Herholz_US Neurology  27/01/2011  11:20  Page 29



tracer binding with the amount of post-mortem Aβ deposition, as shown

for florbetapir at the International Conference on Alzheimer’s Disease

(ICAD) 10 conference.40

Another F-18-labeled amyloid tracer is 2-(1-(6-[(2-[F-18]fluoroethyl)

(methyl)amino]-2-naphthyl)ethylidene)malononitrile, abbreviated to

FDDNP, which binds to Aβ with less affinity than PIB and related

compounds.41 It competes with non-steroidal antiphlogistics42 when

binding and has significant affinity to pathological intracellular tau

deposits (neurofibrillary tangles). These deposits are mainly located in

the hippocampus in AD and also occur in other neurodegenerative

diseases. Accordingly, a gradual increase in binding was observed in

MCI and AD patients, mainly in the hippocampus but also in brain areas

with predominant Aβ deposits.43 Direct comparison with C-11-PIB

demonstrated the differences in spatial distribution, and greater overlap

between controls and patients than with C-11-PIB.44,45

Microglial Activation
Microglia are the resident immune cells of the brain. In response to

brain damage, microglia undergo changes in their morphology, migrate

toward the lesion site, proliferate, and produce cytokines and reactive

oxygen species. This is associated with expression of the peripheral

benzodiazepine receptor, which is known to be located at the

mitochondrial translocator protein.46 Activated microglia are present at

sites of aggregated Aβ deposition in the brains of AD subjects47 and may

contribute to Aβ removal. However, the secretion of cytokines

associated with microglial activation may also contribute to tissue

damage and apoptosis. Further research with longitudinal assessment of

microglial activation in humans is therefore needed to understand its

consequences and whether it is a major factor that influences the rate of

disease progression.48

Tracers for Microglial Activation Imaging
The first tracer that became available for imaging of microglial activation

in humans was 11C-PK11195. This has been shown to largely reflect the

distribution of activated microglia in experimental and human brain

disease,49,50 demonstrating microglial activation in multiple system

atropy.51 The in vivo PET findings in AD are not particularly clear. An

early study using racemic 11C-PK11195 was negative,52 probably due to

the relatively high level of non-specific binding resulting in unfavorable

signal strength. A recent study using the R-isomer according to current

standards,53 on the other hand, found moderately increased binding. 

Thus, there is a need for the development of better tracers, ideally

labeled with fluorine-18, for clinical use. A large number of new tracers

have been tested in experimental animals.54 Initial clinical studies using

various tracers have detected that there is an as yet unidentified genetic

polymorphism that leads very low binding with some of the new tracers

in about one-fourth of normal individuals tested so far.55,56 This

complicates the clinical application of such tracers.

Glucose Metabolism
Cerebral glucose metabolism is measured by the most widely available

PET tracer, 18F-2-fluoro-D-deoxyglucose (FDG). There is close coupling

of glucose metabolism with neuronal function.57 Glucose is the main

substrate for the energy production that is required to maintain

neuronal ion gradients for neuronal activity. Coupling to synaptic activity

is also mediated by the neuron-astrocyte glutamate shuttle.58,59

Over more than 20 years, multiple studies have demonstrated that

glucose metabolism and blood flow are imparied in temporal-parietal

association cortices, with the angular gyrus usually being located at the

center of the metabolic impairment.60 The frontal association cortex may

also be involved, but more variably so and usually to a lesser degree and

only during progression of AD. There may be a distinct hemispheric

asymmetry, which usually corresponds to the predominant cognitive

deficits (language impairment in the dominant and visuospatial

disorientation in the sub-dominant hemisphere). 

In contrast to other dementia types, glucose metabolism in basal

ganglia, primary motor, visual cortex, and cerebellum is usually well

preserved. This pattern generally reflects the clinical symptoms of AD,

with impairment of memory and associative thinking, including 

higher-order sensory processing and planning of action, but 

with relative preservation of primary motor and sensory function.

Glucose metabolism provides high diagnostic power, especially when

used in combination with automated objective image evaluation

software.61,62 As such, it has been recommended in current guidelines

for dementia diagnosis.63

Longitudinal studies have demonstrated that the severity and extent of

metabolic impairment in the temporal and parietal cortex increases with

dementia progression and frontal reductions become more evident.64,65

The annual decrease of metabolism in association cortices is 5–6%.66,67

Asymmetrical metabolic impairment and associated predominance 

of language or visuospatial impairment tends to persist during

progression.68,69 Based on these observations, FDG PET can serve as a

surrogate marker in therapeutic trials.70–72

There are several indications that increased activation in some parts of

the brain may provide compensation for the failure of function in other

parts.73 During the pre-dementia stages of AD, frontal brain function may

compensate for the failure of the Papez circuit—which includes the

hippocampus and is essential for acquisition of long-term memory—as

well as posterior association cortices. The prefrontal cortex was the
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Figure 2: Acetylcholine Esterase Activity in 
Alzheimer’s Disease Compared with Dementia

Mild Alzheimer dementia
MMSE 23

Severe Alzheimer
dementia MMSE 10

Dementia with
Lewey Bodies MMSE 19

Positron emission tomography scans of acetylcholine esterase activity (accumulation of 
11C-MP4A 30 to 60 minutes after injection) in two patients with Alzheimer’s disease showing
reduction of cortical activity compared with more extensive reduction in dementia with
Lewy bodies (arrows mark the brain areas with the most severe reduction). 
MMSE = Mini Mental State Examination.
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region with the most pronounced decline in brain metabolism in a study

of progression from MCI to dementia.74 Highly-educated patients

beginning dementia appear able to partially compensate for impaired

metabolism in the posterior cingulate cortex.75 The very high frontal Aβ

load in most patients before the onset of dementia is not paralleled by a

decrease in glucose metabolism,26 possibly indicating higher resistance

of frontal neuronal function to pathological protein deposition.

Cholinergic Neurotransmission
It is known from pathological studies that there is a severe loss of

cholinergic fibers and their characteristic enzymes and receptors in AD

and DLB (see Figure 2).76

While there are no suitable tracers for acetylcholine transferase, tracers

have been developed for other cholinergic markers. Labeled analogs of

acetylcholine, which are also substrates for acetylcholine esterase

(AChE), can be used to measure and image its activity in vivo. These

acetylcholine analogs are 11C-N-methyl-4-piperidyl-acetate (MP4A, also

known as AMP),77 which is 94% specific for AChE in human brain, and

11C-N-methyl-4-piperidyl-propionate (MP4P or PMP).78

A significant decrease in cortical AChE activity has been observed 

in MCI and AD,79 probably reflecting the loss of AChE that is associated

with cholinergic axons.80 The loss is most severe in the temporal

neocortex, where it is correlated with memory deficits, while in other

brain areas it is mostly related to deficits in attention.81 The AChE imaging

technique has also been used to measure drug-induced AChE inhibition

in AD patients, which for all currently available cholinesterase inhibitors

at standard clinical doses is in the range of 30–40%.82–84

Nicotinic receptors have attracted intense interest, but available tracers

still suffer from methodological limitations. 11C-nicotine has a high level

of unspecific binding, although reduced binding in AD can be

detected.85,86 The a4b2 receptor subtype has been imaged using 

18F-A8538087,88 and 131I-A85380.89 Reduction of binding has been

observed using these agents in MCI and AD,90 as well as in Parkinson’s

disease with cognitive impairment.91 Despite this, the binding kinetics

are too slow for reliable quantitation and clinical use.92 The quest for

faster kinetics is motivating ongoing research for better ligands.

Serotonin
Impairment of serotonergic innervation has mostly been studied in the

context of depression. Depression is also a major clinical issue in

dementia. A reduction of receptor binding potential in AD has been

observed in AD, mainly for 5-HT(2A) receptors.93–95 In MCI, reduced 

5-HT(2A) binding capacity in the striatum has been correlated with

depression and anxiety scores.96 Reduced serotonin transporter binding

potentials have also been observed using 11C-DASB and is most clear

in AD patients with depression.97

Dopamine
The tracer most widely used to examine dopamine synthesis and

vesicular storage is 18F-fluorodopa.98 A deficit of dopamine synthesis

similar to Parkinson’s disease has been found in DLB, even at a stage

when parkinsonism may not yet be prominent.99 As dopamine synthesis

is normal in patients with AD, 18F-fluorodopa provides an important

diagnostic marker. In contrast to the cholinergic impairment, which is

severe in DLB but only mild in Parkinson’s disease without dementia, the

dopaminergic deficit does not appear to be related to dementia.100

The dopaminergic degeneration in DLB is also evident in studies with

ligands for dopamine transporters, such as 123I-FP-CIT.101

There is also interest in the imaging of vesicular monoamine

transporters,102 which provide a very sensitive—albeit probably somewhat

less specific—indication of dopaminergic neurodegeneration.103 Different

transporter types have been compared in a multitracer study of the

pathophysiology of dopamine turnover.104

Conclusion
Molecular imaging using PET in humans is providing powerful tools for

specific and early diagnosis of AD even before the onset of dementia.

There is a pressing need for the development of disease-modifying

treatment that can prevent or delay dementia in patients who already

carry the biological markers of AD but have little cognitive impairment.

It is expected that molecular imaging will play an increasing role in

reaching this goal by contributing to translational pathophysiological

research, drug development and early clinical diagnosis. n
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