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Intranasal Delivery—A New Therapeutic Approach for Brain Tumors

Despite significant advances in tumor imaging, neurosurgery, and

radiotherapy, the prognosis for patients with malignant gliomas is

extremely poor. The five-year survival rate for patients with glioblastoma

(GBM), the most aggressive form of malignant glioma, is less than 5%

after initial diagnosis.1 Factors that contribute to the dismal prognosis

associated with GBM include its infiltrative nature throughout the brain,

which limits the effectiveness of local treatment of surgical resection and

targeting of radiotherapy, and the blood–brain barrier (BBB), which limits

access of systemically administered therapeutics to the tumor. 

In the past decade a number of drug delivery strategies have been

developed to overcome challenges presented by the BBB. In particular,

direct drug administration into the brain parenchyma, such as convection-

enhanced delivery (CED), has shown promising results in both animal

models and clinical trials.2–12 CED is a continuous infusion that uses a

convective (versus diffusive) flow to drive the therapeutic agent throughout

a larger region of tissue. This technique is well suited for the delivery of

liposomes6,9,11–15 and particulate drug carriers,6,9,16,17 which have the potential

to provide a sustained level of drug and to reach cellular targets with

improved specificity. However, CED requires the use of potentially risky

surgical procedures to position the catheter into the patient’s brain

parenchyma.18,19 The convective flow to distribute the drug through the

implanted catheter leads to measurable and significant inflammation and

local edema because the drug solution infuses continuously beyond the

tumor boundary into the adjacent normal brain tissue.4,7,9 This ‘spillover’ of

drug to unwanted brain regions may be due to the pressure gradient of the

convective bulk flow of CED and could lead to neural toxicity.20

One technique that holds promise for bypassing the BBB to deliver drugs

to the brain and eliminating the surgical risk and the spillover effect of drug

to normal tissue is intranasal delivery. Intranasal delivery provides a

practical, noninvasive method for delivering therapeutic agents to the brain

because of the unique anatomic connections provided by the olfactory and

trigeminal nerves. These nerves connect the nasal mucosa and central

nervous system (CNS), allowing them to detect odors and other chemical

stimuli.21,22 Intranasally administered drugs reach the brain parenchyma,

spinal cord, and cerebrospinal fluid (CSF) within minutes by using an

extracellular route through perineural and/or perivascular channels along

the olfactory and trigeminal nerves without binding to any receptor or

using axonal transport (see Figure 1).23,24 In addition to bypassing the BBB,

advantages of intranasal delivery include rapid delivery to the CNS,

avoidance of hepatic first-pass drug metabolism, and elimination of the

need for systemic delivery, thereby reducing unwanted systemic side

effects. Intranasal delivery also provides painless and convenient self-

administration for patients, features that encourage its use for delivering

therapeutic agents into the CNS.25 Many therapeutic agents, including

growth factors, proteins, peptides, viral vectors, liposomes, and vaccines,

have been delivered to the CNS through the nasal route and applied for the

treatment of CNS disorders in both animals and humans.21,24,26–39 Thorne et

al. reported that insulin-like growth factor-1 can be rapidly transported into

the rat brain and upper spinal cord via the olfactory and trigeminal

pathways.21 Thorne et al. have recently reported delivery of interferon-

beta-1b to the CNS in monkeys along the same neural pathways.29 In

humans, intranasal delivery of insulin has been shown to improve memory

in normal adults40 and in patients with early Alzheimer’s disease41,42 without

changing blood levels of glucose or insulin.43 Also, intranasal oxytocin has

been reported to improve trust in humans.44

In brain tumors, anticancer agents such as methotrexate,45 5-fluorouracil,46

and raltitrexed47 have been delivered successfully to the brain using

intranasal delivery. Shingaki et al. reported that intranasally delivered

methotrexate reaches the CSF and reduces tumor weight in rodent glioma

allografts.48 Intranasal drug targeting to the brain of the chemotherapeutic

raltitrexed is significantly higher than that with intravenous administration.47

However, these chemotherapeutic agents do not discriminate between

tumor and normal tissue. Thus, the concentrations of drug required to kill

tumor cells can also lead to toxicity in normal neural tissue. To achieve
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Figure 1: The Anatomical Extraneuronal Pathways 
Provided by the Olfactory and Trigeminal Nerves 
Following Intranasal Administration21
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Intranasally applied drugs are rapidly transported into the central nervous system (CNS) tissue by
the peripheral olfactory system (shown in red), connecting the nasal passages and olfactory
bulb/rostal brain, and into the peripheral trigeminal system (shown in blue), connecting the
nasal passages and the brainstem/spinal cord. Cistermal sampling in rats (asterisk) has
demonstrated that some molecules, mostly lower-molecular-weight solutes, can rapidly enter 
the cerebrospinal fluid (CSF) after intranasal administration (shown in black). 
SAS = subarachnoid space.
Reprinted from: Thorne RG, Pronk GJ, Padmanabhan V, Frey WH II, Delivery of insulin-like
growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways
following intranasal administration, Neuroscience, 2004;127:481–96. Copyright © 2004, with
permission from Elsevier.
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therapeutic efficacy without toxicity to normal tissue, the drugs need to

preferentially target brain tumor while sparing normal tissue from damage.

Recently, two different therapeutic agents, including a glioma-adapted

vesicular stomatitis virus strain, VSVrp30a,49 and an oligonucleotide

telomerase inhibitor, GRN163,50 have been used to selectively target

malignant gliomas and have shown impressive oncolytic activity without

harming normal brain tissue. Both studies utilized intranasal delivery,

resulting in targeted and effective delivery of the therapeutic agents to

the tumor and inhibition of the tumor growth in human GBM xenografts.

In addition, intranasal delivery of the telomerase inhibitor GRN163

doubled the survival time for xenografted animals without apparent

toxicity. Although intranasal GRN163 delivery is extracellular, as

described above, intranasal VSVrp30a likely involves viral transmission

within the olfactory neural pathway to the brain. These findings support

further development of intranasal VSVrp30a and GRN163 as potential

therapies for brain tumor patients and perhaps as a means for treating

multifocal brain tumors such as metastasis brain tumors and/or pediatric

brainstem tumors, which are less amenable to potentially risky surgical

procedures. Telomerase inhibitors, including GRN163, have reached the

stage of clinical trials, so may soon become part of the available

therapeutic armamentarium for cancer. 

Given the promising results from recent animal studies, intranasal

therapeutic agents would seem to be prime candidates for clinical trials in

patients with brain tumors. Initial trials of intranasal perillyl alcohol have

begun in patients with recurrent malignant gliomas, and a reduction in the

size of the brain tumors has been reported.51,52 ■
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