
Parkinson's disease (PD) is the second most common neurodegenerative

disease affecting 1 % of the population above the age 65.1 The incidence

of PD is expected to increase dramatically worldwide with increased life

expectancy.2 PD is manifested by the combination of primary motor

disability (bradykinesia, rigidity, tremor, and gait impairment) as well as a

spectrum of non-motor symptoms including cognitive, mood, autonomic,

and sleep dysfunction.3 The cause of cells degeneration in PD remains

unknown. While there is a widespread distribution of neuropathologic

changes in the brain responsible for the spectrum of the motor and 

non-motor manifestations of PD, degeneration of dopamine-producing

cells in the substantia nigra pars compacta (SNc) is central to the primary

motor signs of the disease.3

Presently, treatment of PD is limited to symptomatic therapy, aimed 

at mitigating the dopamine deficiency. While treatment can be very

effective early in the stages of the disease, it does not impact the

progression of the degenerative process. A neuroprotective agent that

could slow the progression of the disease has been the holy grail of

research in PD. Several agents have been tried, but none have been

shown to be effective. The reasons for this failure are unclear, but are

likely to stem from the complexity of pathogenesis and the inability 

to attack the disease process sufficiently early in its course. Another

major limitation in clinical trials currently is lack of reliable, objective

biomarkers of disease progression. Until such biomarkers are available,

the term that should be used in the discussion of the clinical trials

outcomes is disease modification, which implies a positive impact on

the clinical course of the disease without specifically linking it to

pathogenesis. Ultimately, the choice of an agent for neuroprotection in

PD should be based on the solid understanding of etiology.

Parkinson’s Disease Etiology 
The etiology of PD remains unknown. The pathologic hallmark of 

PD is the presence of intracytoplasmic eosinophyllic, proteinaceous

inclusions, termed Lewy bodies (LB), in surviving neurons. LBs contain
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the protein α-synuclein,4 which appears to have a role in the release 

of neurotransmitter from synaptic terminals.5 One proposed mechanism

is α-synuclein-induced impairment of the ubiquitin-proteasomal system

(UPS), resulting in protein accumulation and leading to cell degeneration.6

LBs are widely distributed in the brains of PD patients, including the SNc,

raphe nucleus, locus ceruleus, pedunculopontine nucleus, dorsal motor

nucleus of vagus, olfactory bulb, and some cortical structures.7

While the neuropathologic changes in PD are widespread and 

include a number of neurotransmitter pathways, the cardinal motor

manifestations of the disease are clearly linked to the degeneration 

of the dopamine-producing cells in the SNc. Some of the postulated

mechanisms of SNc cells’ death is oxidative stress and complex I

mitochondrial dysfunction.8 A mitochondrial linkage is supported by the

recent advances in the knowledge of the genetic mutations associated

with the rare familial forms of PD. Several of PD genes have a role in

mitochondrial function. PINK1, DJ-1, and LRKK2 encode proteins that are

localized to the surface or in the mitochondria.9–11 Rotenone, paraquat,

and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxins that

produce animal models of parkinsonism are believed to work via

mitochondrial complex I inhibition.10 Mitochondrial dysfunction leads 

to the generation of reactive oxygen species (ROS), that are cytotoxic

and can lead to the formation of LB-like intraneuronal filamentous

inclusions, containing α-synuclein and ubiquitin.12,13 It is believed that all

the above postulated pathogenic factors result in a common pathway of

cell degeneration by mechanism of apoptosis. 

Based on the postulated mechanisms of cell degeneration and preclinical

data a number of clinical trials have been conducted or are underway

aiming to attack various levels of the cascade of the neurodegenerative

process. Tested agents targeted various potential mechanisms of PD

pathogenesis including oxidative stress (eldepril, Vitamin E), mitochondrial

dysfunction (CoQ10, ongoing studies of creatine), apoptotic mechanism 

of cell death (caspase inhibitors), antiexcitatory agents (riluzole), 

anti-inflammatory agents (minocycline), trophic factors, and others.14–23 So

far, none of the agents have demonstrated a positive effect on the course

of the disease process. The reasons for negative results of the clinical

trials are multifactorial, but one of them is likely a failure to address

unique selective vulnerability of the cells in SNc. 

The Physiologic Phenotype of Substantia 
Nigra Pars Compacta Dopaminergic Neurons
Potentially Explains Selective Vulnerability 
Recent studies demonstrate that dopaminergic (DA) neurons in the 

SNc, as well as many neurons in other regions affected by PD, have 

a distinctive physiologic phenotype. They are slow and autonomous

pacemakers, with broad action potentials.24–27 Although many neurons 

in the brain generate autonomous activity, few have this physiologic

phenotype. Most pacemakers have very short spikes and limit Ca2+

entry to a millisecond period around the spike. In contrast, SNc DA

neurons have broad spikes and have membrane potential trajectories

that ensure that low threshold Ca2+ channels like those with a Cav1.3

subunit are open virtually all of the time. This continuous Ca2+ influx leads

to oscillations in cytosolic Ca2+ concentration.24,25 This Ca2+ influx

distinguishes SNc DA neurons from DA neurons in the ventral tegmental

area (VTA), which also are slow, broad action potential pacemakers.28

In contrast to SNc DA neurons, VTA DA neurons have a more modest

vulnerability in PD.29

Substantia Nigra Pars Compacta Cells
Pacemaking and Mitochondrial Oxidant Stress 
When neurons generate spikes, the transmembrane ionic gradients that

enable this activity are dissipated. These gradients must be restored

with ATP-dependent pumps and exchangers. Thus, sustained activity 

is energetically expensive. Ca2+ ions, because they must be rapidly

sequestered or pumped back across the plasma membrane, could pose

a particularly significant energetic burden. In neurons, this demand for

ATP is met primarily by oxidative phosphorylation in mitochondria.30

Oxidative phosphorylation comes at a cost: the production of potentially

damaging superoxide and reactive oxygen species. 

Recent studies by our group have shown that Ca2+ entry through L-type

channels elevates mitochondrial oxidant stress in SNc DA neurons.25

How this happens is not entirely understood. It does not appear 

to depend solely upon the energetic burden posed by Ca2+ entry 

and might involve altered mitochondrial respiratory control. This study

also provided an important insight into how this Ca2+-dependent

mitochondrial stress and genetic mutations associated with PD might

interact to selectively increase the vulnerability of SNc DA neurons.

Mutations in DJ-1 are associated with an early onset, recessive form 

of PD.10 In SNc DA neurons from mice lacking DJ-1, mitochondrial 

oxidant stress was significantly higher than in wild-type neurons. This

was not simply a consequence of losing functional DJ-1 however, 

as neighbouring VTA DA neurons displayed no measurable stress. As in

wild-type neurons, the oxidant stress was reversed by treatment with

DHP channel antagonists. These results suggest that DJ-1 is activated

only in response to oxidant stress and provide some measure of

defense, an idea with broad experimental support.31 These data provide

a mechanism by which defects in a widely expressed gene can affect a

small population of neurons. Furthermore, while elevated mitochondrial

oxidant stress has long been hypothesized to play an important role in

the etiology of PD, there has not been a coherent explanation for why

SNc DA neurons—in particular—should be stressed. The physiologic

phenotype of SNc DA neurons—pacemaking, broad action potentials,

sustained opening of L-type Ca2+ channels, and the resulting

mitochondrial oxidant stress—provides an explanation for selective

vulnerability and, more importantly, establishes the target for potential

neuroprotective interventions. 

Indeed, antagonizing L-type Ca2+ channels is neuroprotective in toxin

models. For example, pre-treatment of mesencephalic brain slices 

with isradipine, the most potent of the dihydropyridine (DHP) channel

antagonists at L-type Ca2+ channels with the Cav1.3 subunit, significantly

diminishes the damage to SNc DA neurons caused by the mitochondrial

toxin rotenone.24 Moreover, systemic administration of isradipine to

mice at doses achieves serum concentrations in the same range 

as those found in humans following oral administration protects SNc 

DA neurons in both a chronic MPTP and acute 6-hydroxydopamine 

(6-OHDA) models.24,32 Although these channels participate in normal

pacemaking, they are not essential and antagonizing them with

therapeutically relevant concentrations of dihydropyridine has no effect

on the rest of the mouse behavior or phenotype.25
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Does Physiologic Phenotype Predict the 
Pattern of Parkinson’s Disease Pathology?
While isradipine might be effective in protecting SNc DA neurons, will 

it be effective in other regions affected by PD? There are a number of

regions of the brain that have cell loss paralleling that of the SNc.7

Although the available data set is fragmented, neurons in the dorsal

motor nucleus of the vagus (DMV), locus ceruleus (LC), raphe nuclei

(RN), pedunculopontine nucleus (PPN), lateral hypothalamus (LH),

tuberomammillary nucleus, basal forebrain (BF), and olfactory bulb all

exhibit signs of pathology and all have a physiologic phenotype

resembling that of SNc DA neurons. DMV cholinergic neurons, which are

thought to be among the earliest neurons with α-synuclein in PD, 

are spontaneously active;33 this activity is autonomously generated and

engages L-type calcium channels (unpublished observations). Serotonergic

neurons in the RN have broad spikes and are calcium-dependent

autonomous pacemakers.34 This is also true of PPN cholinergic neurons.35

Tuberomammillary neurons are spontaneously active and engage L-type

Ca2+ channels.36 DA neurons in the olfactory bulb are calcium-dependent,

autonomous pacemakers.37

Perhaps the neurons most affected in PD, other than SNc DA neurons,

are LC noradrenergic neurons.7 Like SNc DA neurons, they are

autonomous pacemakers (with broad spikes) that engage L-type calcium

channels.38 Moreover, these neurons display all the signs of

mitochondrial oxidant stress found in SNc DA neurons and this stress is

significantly alleviated by isradipine. Taken together, these studies make

a compelling case that the DHP class of agents should be broadly

effective in slowing the progression of PD.

Epidemiologic Studies 
Recent epidemiologic data also supports the potential neuroprotective

effect of DHPs in PD. Two studies demonstrated reduced risk of

development of PD in subjects treated with calcium channel blockers

(CCBs) compared to other antihypertensive agents.39,40 The most recent

study assessed the risk of the new diagnosis of PD in a cohort of 1,931

patients with new diagnosis of PD versus 9,651 matched controls. 

The study demonstrated a 27 % risk reduction (OR=0.73) of a new

diagnosis of PD in subjects treated with centrally acting DHP compounds

compared to other CCBs or other antihypertensive agents. That study

provides strong supporting evidence of channel specific selectivity 

of the potential neuroprotective effect of CCBs restricted to DHP

compounds. The study also provides indirect evidence of sufficient 

CNS penetration of the subset of DHPs as the risk reduction was seen

only with the centrally acting DHPs and not observed with amlodipine

that has low CNS penetration. 

Isradipine 
Currently, there are no Cav1.3 channel selective DHPs. Isradipine is the

most potent DHP at these channels and is FDA approved for treatment

of hypertension since 1990.41 Isradipine is available in immediate 

(IR) and controlled release (CR) preparation in 5–20 mg dose range.

Isradipine is rapidly and almost completely (90–95 %) adsorbed

following oral administration but undergoes extensive first pass

metabolism, resulting in bioavailability of 15–24 %. Peak serum levels

occur in about 1.5 hours for the IR preparation and 8–10 hours for the

CR preparation. Animal studies have demonstrated a neuroprotective

effect of isradipine in an intrastriatal 6-OHDA model at the serum

concentrations achievable within the dose range approved for human

use.32 Isradipine belongs to the group of lipophilic DHPs that have 

good bioavailability in non-human primates with brain to serum

concentration ratios significantly above one.42 Isradipine is among the

more lipophilic DHPs, enhancing its brain bioavailability. Recently

published epidemiologic data showing a reduced incidence of 

PD in patients treated with centrally bioavailable DHPs also strongly

supports good CNS penetration of DHPs.40

Preliminary Human Data 
We have conducted an open-label dose escalation safety and tolerability

study of isradipine in patients with early PD. The study demonstrated

dose-dependent tolerability of isradipine CR: 94 % for a 5 mg dose; 87 %

for a 10 mg dose; 68 % for a 15 mg dose; and 52 % for a 20 mg dose.43

Isardipine had no significant effect on blood pressure or PD motor

disability. The two most common reasons for dose reduction were leg

edema (seven) and dizziness (three). There was no difference in isradipine

tolerability between subjects with and without dopaminergic treatment.

That study supports good tolerability of isradipine CR at daily doses up

to 10 mg in subjects with early PD. 

A pilot Phase II double-blind, placebo-controlled, tolerability- and

dosage-finding study of isradipine CR as a disease modifying agent 

in patients with early PD (STEADY-PD) supported by the Michael J Fox

Foundation is ongoing. The objective of the study is to establish safety

and tolerability of isradipine CR across the FDA-approved dosing range

(5–20 mg) in a larger cohort of patients with early PD and to evaluate the

comparative efficacy of three doses of isradipine CR, provided that they

are tolerable. The study recruited subjects with early PD not requiring

dopaminergic therapy (stable dose of amantadine, anticholinergics, and

monoamine oxidase (MAO-B) inhibitors are allowed). The study is designed

as a multicenter 52 weeks’ duration, randomized, four-arm double-blind

parallel group trial, with 100 subjects randomized to 5, 10, or 20 mg 

of isradipine CR or matching placebo daily. The dosage that is tolerable

and demonstrates preliminary efficacy will be used in the future pivotal

efficacy study.44 Tolerability of each active dosage will be compared with

the tolerability of placebo. Provided that the dose is tolerable, the choice

for the dose selection will be based on efficacy defined as the change 

in total UPDRS score between the baseline visit and month 12 or the

time of sufficient disability to require dopaminergic therapy, whichever

occurs first. Comparison will be made between three active treatment

arms. The dosage that demonstrates the greatest efficacy will be used

in the proposed pivotal study. The study has successfully completed

recruitment, with the final data analysis expected to be available in the

next six months. 

Conclusion 
There is solid scientific rationale, preclinical, and epidemiologic data 

to support the potential benefit of isradipine as a disease modifying

agent in early PD. Results of the ongoing Phase II study will be available

shortly and will inform the design of the future pivotal efficacy trial. n
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