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Abstract
The most sensitive and accurate method for molecular imaging in human Alzheimer’s disease (AD) is positron emission tomography 

(PET). The most widely available PET tracer, which is also used in clinical oncology, is 18F-2-fluoro-2-deoxy-D-glucose (FDG). FDG is an imaging

biomarker for early and differential diagnosis of AD. Even higher molecular specificity and sensitivity for detection of AD before dementia onset

is provided by high-affinity ligands for fibrillary amyloid. 11C-Pittsburgh Compound B is widely being used in research laboratories, while new

18F-labelled ligands are currently undergoing formal clinical trials as amyloid imaging agents and are expected to become commercially

available for clinical use in the near future. A large variety of tracers is being developed and used in dementia research for activated microglia

and multiple neurotransmitter systems to study disease pathophysiology, biological correlates of clinical symptoms and new possibilities for

treatment. Current studies in humans are investigating cholinergic, serotonergic and dopaminergic neurotransmission.
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Neurodegenerative dementia has become the most rapidly growing

cause of severe disability in the world. The most important risk factor

is old age, while genetics and lifestyle also contribute. Therefore,

better treatment and effective intervention are urgently needed at an

early stage before the onset of severe disability. This requires further

research into the risk factors and pathophysiological determinants of

disease manifestation in humans and better, specific diagnosis at an

early stage before dementia develops. Molecular imaging can provide

the tools to achieve these goals.

Positron Emission Tomography
The most sensitive and accurate method for molecular imaging in

humans is positron emission tomography (PET) and therefore this

article focuses on this technique. It employs minute amounts (in the

micromolar range) of short-lived radioactive tracers. They are labelled

with either: 

•   carbon-11 (physical half-life 20 minuntes), which requires a

cyclotron and associated radiopharmacy on site and is therefore

not practical for widespread clinical use; or

•   fluorine-18 (physical half-life 90 minutes), which allows remote

regional tracer production and delivery to clinical nuclear 

medicine departments. 

Clinical PET scans typically involve intravenous tracer injection and

subsequent brain scanning for 10–30 minutes at resting state. PET

scans are associated with very low radiation exposure of

approximately 5mSv.1 This article discusses imaging biomarkers that

are provided by clinical PET for early diagnosis of disease and

monitoring of disease progression.2,3 It describes the clinical utility of

glucose and amyloid scanning. It also provides a brief overview 

of current research investigating possible determinants of disease

progression, such as neuroinflammation, and changes in major

neurotransmitter systems and their relation to clinical symptoms.

Amyloid Imaging
The deposition of amyloid-β (Aβ) is an early event in the pathogenesis

of AD and is central in the amyloid cascade hypothesis. The first

tracer to be used to label fibrillary Aβ selectively with high affinity 

in vivo was 11C-labelled Pittsburgh compound B (11C-PIB).4,5 Many

research studies and recent multicentre studies have demonstrated

that this tracer has a very high sensitivity of 90% for detecting fibrillary

amyloid plaques in patients with Alzheimer’s disease (AD).6–9

The apolipoprotein E (APOE) e4 allele is a genetic risk factor for

increased PIB uptake10–12 and cortical PIB binding is correlated

negatively with amyloid beta-protein 42 (abeta42) in cerebrospinal

fluid.13–15 Similar results have been obtained with quantification of

tracer binding by dynamic measurement and by simplified static

imaging protocols recording cortical tracer uptake in a single scan

lasting for 40 to 60 minutes following intravenous injection of 

11C-PIB.16,17 These results demonstrate the robustness and clinical

applicability of the method. The cerebellar cortex, which may exhibit

diffuse but not fibrillary amyloid in AD, is generally used as a

reference region without specific PIB binding.

Most normal control subjects exhibit very low cortical binding of PIB,

with less than 1.5-fold PIB uptake relative to the cerebellar cortex. In
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addition, unspecific binding is observed mainly in white matter. A

proportion of normal elderly controls show higher cortical PIB binding,

typically resulting in a bimodal distribution of PIB uptake in samples 

of control subjects. Current studies indicate that the frequency of

increased cortical PIB binding in controls increases rapidly from 

10% or less below 70 years of age to 30–40% at 80 years of age,

largely reflecting similar findings in previous autopsy studies.18 The

clinical implications of Aβ deposition in elderly controls are not yet

clear. Some elderly controls have indicators of the start of

neurodegeneration19,20 or will develop cognitive deficits,21 but cerebral

function in others may be resistant to Aβ deposition. Long-term

follow-up studies are currently under way to clarify this issue.

Findings in patients with mild cognitive impairment (MCI) are

heterogeneous. In most studies approximately two-thirds of patients

showed increased binding, such as AD patients, while the rest were

within normal limits. Published results from follow-up studies indicate

that patients with increased binding are at high risk for progressing to

AD with manifest dementia,22,23 while MCI patients with negative PIB

scans very rarely develop dementia.24 Patients with amnestic MCI

show more PIB binding than non-amnestic MCI.25 Aβ deposition is high

in posterior association areas, where it correlates with a decline in

glucose metabolism. However, it is also high in the frontal association

cortex where that correlation is absent.26

The amount of Aβ deposition and PIB binding is highly variable in AD.

Despite this, PIB imaging is very sensitive for detection of AD. It is

likely that a significant proportion of the PIB-negative AD patients in

clinical series (up to 10%) will be due to clinical misdiagnoses. Only

under exceptional circumstances has PIB-negativity been confirmed

in AD.27

Besides APOE e4, additional genetic factors that have not yet 

been identified appear to play a role.28 Initital follow-up studies with

11C-PIB in AD have indicated that there is little further increase in

tracer uptake during progression of the disease.29 However, recent

preliminary results from large multicentre studies (the Alzheimer's

Disease Neuroimaging Initiative [ADNI] and the Australian Imaging,

Biomarker and Lifestyle [AIBL] study of ageing) indicate further

increase. A decrease in PIB binding has been observed in patients

undergoing clinical trials of drugs that remove Aβ from the brain,30 but

it has not yet been demonstrated that this would be associated with

clinical benefit.

Differential Diagnosis using Amyloid Imaging
Amyloid imaging is expected to provide excellent differentiation of AD

from frontotemporal dementia, which is not associated with Aβ

deposition and increased 11C-PIB binding (see Figure 1).31 Dementia

with Lewy bodies (DLB) often also shows fibrillary Aβ deposition in

pathological studies and correspondingly positive PIB scans are

reported in most patients.32,33 Moderately increased PIB binding,

predominantly in occipital regions and on average less than in AD, has

also been observed in non-demented patients with cerebral 

Aβ angiopathy.34

Tracers in Clinical Trials
There are currently three 18F-labelled tracers being studied in clinical

trials that have been developed as proprietary tracers for commercial

distribution. These are flutemetamol (GE-067, 3’-fluoro-PIB),

florbetaben (BAY-94-9172, AV-1) and florbetapir (AV-45). They 

show high-affinity binding for fibrillary Aβ with Ki <10nM, similar 

to 11C-PIB, while non-specific binding in white matter is higher than

with 11C-PIB. Ongoing research is aiming to develop tracers that show

a lower level of non-specific binding.35,36

Flutemetamol, florbetaben and florbetapir appear to have largely

similar imaging properties, although the optimum scanning time after

intravenous injection varies. Results from clinical trials indicate that

they will likely provide high diagnostic power for discrimination

between AD patients and controls.37,38 They also demonstrate a close

correlation between the cortical binding of 11C-PIB and 18F-fluoro-PIB

in cortical regions.39 Preliminary results demonstrate a close

correspondence of tracer binding with the amount of post mortem Aβ

deposition, as shown for florbetapir at the International Conference

on Alzheimer’s Disease (ICAD) 10 conference.40

Another F-18-labelled amyloid tracer is 2-(1-(6-[(2-[F-18]fluoroethyl)

(methyl)amino]-2-naphthyl)ethylidene)malononitrile (FDDNP), which

binds to Aβ with less affinity than PIB and related compounds.41 It

competes with non-steroidal antiphlogistics42 when binding and has

significant affinity to pathological intracellular tau deposits

(neurofibrillary tangles). These deposits are mainly located in the

hippocampus in AD and also occur in other neurodegenerative

diseases. Accordingly, a gradual increase in binding was observed 
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Figure 1: Amyloid PET and MRI Brain Scans of Normal,
Dementia and Alzheimer’s Disease Patients 

Normal control

Fronto-temporal dementia

Alzheimer’s disease

Amyloid positron emission tomography scans using florbetapir (with coregistered magnetic
resonance imaging scans), demonstrating low normal cortical uptake in an aged normal 
control and a patient with fronto-temporal dementia in contrast to high cortical uptake in
Alzheimer’s disease.
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in MCI and AD patients, mainly in the hippocampus but also in 

brain areas with predominant Aβ deposits.43 Direct comparison with

C-11-PIB demonstrated the differences in spatial distribution, and

greater overlap between controls and patients than with C-11-PIB.44,45

Microglial Activation
Microglia are the resident immune cells of the brain. In response to

brain damage, microglia undergo changes in their morphology,

migrate toward the lesion site, proliferate and produce cytokines and

reactive oxygen species. This is associated with expression of the

peripheral benzodiazepine receptor, which is known to be located at

the mitochondrial translocator protein.46 Activated microglia are

present at sites of aggregated Aβ deposition in the brains of AD

subjects47 and may contribute to Aβ removal. However, the secretion

of cytokines associated with microglial activation may also contribute

to tissue damage and apoptosis. Further research with longitudinal

assessment of microglial activation in humans is therefore needed to

understand its consequences and whether it is a major factor that

influences the rate of disease progression.48

Tracers for Microglial Activation Imaging
The first tracer that became available for imaging of microglial

activation in humans was 11C-PK11195. This has been shown to

largely reflect the distribution of activated microglia in experimental

and human brain disease,49,50 demonstrating microglial activation in

multiple system atropy.51 The in vivo PET findings in AD are not

particularly clear. An early study using racemic 11C-PK11195 was

negative,52 probably due to the relatively high level of non-specific

binding resulting in unfavourable signal strength. A recent study using

the R-isomer according to current standards,53 on the other hand,

found moderately increased binding. 

Thus, there is a need for the development of better tracers ideally

labelled with fluorine-18 for clinical use. A large number of new tracers

have been tested in experimental animals.54 Initial clinical studies using

various tracers have detected that there is an as yet unidentified

genetic polymorphism that leads very low binding with some of the

new tracers in about one-fourth of normal individuals tested so far.55,56

This complicates the clinical application of such tracers.

Glucose Metabolism
Cerebral glucose metabolism is measured by the most widely

available PET tracer, 18F-2-fluoro-D-deoxyglucose (FDG). There is

close coupling of glucose metabolism with neuronal function.57

Glucose is the main substrate for the energy production that is

required to maintain neuronal ion gradients for neuronal activity.

Coupling to synaptic activity is also mediated by the neuron-astrocyte

glutamate shuttle.58,59

Over more than 20 years, multiple studies have demonstrated that

glucose metabolism and blood flow are imparied in temporal-parietal

association cortices, with the angular gyrus usually being located at

the centre of the metabolic impairment.60 The frontal association

cortex may also be involved, but more variably so and usually to 

a lesser degree and only during progression of AD. There may be a

distinct hemispheric asymmetry, which usually corresponds to the

predominant cognitive deficits (language impairment in the dominant

and visuospatial disorientation in the sub-dominant hemisphere). 

In contrast to other dementia types, glucose metabolism in basal

ganglia, primary motor, visual cortex and cerebellum is usually well

preserved. This pattern generally reflects the clinical symptoms of

AD, with impairment of memory and associative thinking, including

higher-order sensory processing and planning of action, but with

relative preservation of primary motor and sensory function. Glucose

metabolism provides high diagnostic power, especially when used in

combination with automated objective image evaluation software.61,62

As such, it has been recommended in current guidelines for

dementia diagnosis.63

Longitudinal studies have demonstrated that the severity and extent

of metabolic impairment in the temporal and parietal cortex increases

with dementia progression and frontal reductions become more

evident.64,65 The annual decrease of metabolism in association cortices

is 5–6%.66,67 Asymmetrical metabolic impairment and associated

predominance of language or visuospatial impairment tends to persist

during progression.68,69 Based on these observations, FDG PET can

serve as a surrogate marker in therapeutic trials.70–72

There are several indications that increased activation in some parts 

of the brain may provide compensation for the failure of function in

other parts.73 During the pre-dementia stages of AD, frontal brain

function may compensate for the failure of the Papez circuit – which

includes the hippocampus and is essential for acquisition of long-term

memory – as well as posterior association cortices. The prefrontal

cortex was the region with the most pronounced decline in 

brain metabolism in a study of progression from MCI to dementia.74

Highly-educated patients beginning dementia appear able to partially

compensate for impaired metabolism in the posterior cingulate

cortex.75 The very high frontal Aβ load in most patients before the

onset of dementia is not paralleled by a decrease in glucose

metabolism,26 possibly indicating higher resistance of frontal neuronal

function to pathological protein deposition.

Cholinergic Neurotransmission
It is known from pathological studies that there is a severe loss of

cholinergic fibers and their characteristic enzymes and receptors in

AD and DLB (see Figure 2).76

While there are no suitable tracers for acetylcholine transferase,

tracers have been developed for other cholinergic markers. Labelled

analogs of acetylcholine, which are also substrates for acetylcholine

esterase (AChE), can be used to measure and image its activity in vivo.
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Figure 2: Acetylcholine Esterase Activity in 
Alzheimer’s Disease Compared with Dementia

Mild Alzheimer dementia
MMSE 23

Severe Alzheimer
dementia MMSE 10

Dementia with
Lewey Bodies MMSE 19

Positron emission tomography scans of acetylcholine esterase activity (accumulation of
11C-MP4A 30 to 60 minutes after injection) in two patients with Alzheimer’s disease
showing reduction of cortical activity compared with more extensive reduction in dementia
with Lewy bodies (arrows mark the brain areas with the most severe reduction). 
MMSE = Mini Mental State Examination.
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These acetylcholine analogs are 11C-N-methyl-4-piperidyl-acetate

(MP4A, also known as AMP),77 which is 94% specific for AChE in human

brain, and 11C-N-methyl-4-piperidyl-propionate (MP4P or PMP).78

A significant decrease in cortical AChE activity has been observed in

MCI and AD,79 probably reflecting the loss of AChE that is associated

with cholinergic axons.80 The loss is most severe in the temporal

neocortex, where it is correlated with memory deficits, while in other

brain areas it is mostly related to deficits in attention.81 The AChE

imaging technique has also been used to measure drug-induced

AChE inhibition in AD patients, which for all currently available

cholinesterase inhibitors at standard clinical doses is in the range 

of 30–40%.82–84

Nicotinic receptors have attracted intense interest, but available

tracers still suffer from methodological limitations. 11C-nicotine has a

high level of unspecific binding, although reduced binding in AD can

be detected.85,86 The a4b2 receptor subtype has been imaged using

18F-A8538087,88 and 131I-A85380.89 Reduction of binding has been

observed using these agents in MCI and AD,90 as well as in Parkinson’s

disease with cognitive impairment.91 Despite this, the binding kinetics

are too slow for reliable quantitation and clinical use.92 The quest for

faster kinetics is motivating ongoing research for better ligands.

Serotonin
Impairment of serotonergic innervation has mostly been studied in

the context of depression. Depression is also a major clinical issue 

in dementia. A reduction of receptor binding potential in AD has been

observed in AD, mainly for 5-HT(2A) receptors.93–95 In MCI, reduced 

5-HT(2A) binding capacity in the striatum has been correlated with

depression and anxiety scores.96 Reduced serotonin transporter

binding potentials have also been observed using 11C-DASB and is

most clear in AD patients with depression.97

Dopamine
The tracer most widely used to examine dopamine synthesis and

vesicular storage is 18F-fluorodopa.98 A deficit of dopamine synthesis

similar to Parkinson’s disease has been found in DLB, even at a stage

when parkinsonism may not yet be prominent.99 As dopamine

synthesis is normal in patients with AD, 18F-fluorodopa provides 

an important diagnostic marker. In contrast to the cholinergic

impairment, which is severe in DLB but only mild in Parkinson’s

disease without dementia, the dopaminergic deficit does not 

appear to be related to dementia.100 The dopaminergic degeneration in

DLB is also evident in studies with ligands for dopamine transporters,

such as 123I-FP-CIT.101

There is also interest in the imaging of vesicular monoamine

transporters,102 which provide a very sensitive – albeit probably slightly

less specific – indication of dopaminergic neurodegeneration.103

Different transporter types have been compared in a multitracer study

of the pathophysiology of dopamine turnover.104

Conclusion
Molecular imaging using PET in humans is providing powerful tools for

specific and early diagnosis of AD even before the onset of dementia.

There is a pressing need for the development of disease-modifying

treatment that can prevent or delay dementia in patients who already

carry the biological markers of AD but have little cognitive impairment.

It is expected that molecular imaging will play an increasing role in

reaching this goal by contributing to translational pathophysiological

research, drug development and early clinical diagnosis. n
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