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What Is Constructive Interference in 
Steady State Imaging?
Constructive interference in steady state (CISS) imaging is a member 

of the family of fast gradient echo (GRE) sequences. The CISS

sequence is particularly dependent on high gradient amplitude and

slew rates.1 To run this type of sequence, high-gradient-strength

magnets are required to reach the peak of the gradient as rapidly 

as possible. CISS has different names according to different

manufacturers: it is called fast imaging employing steady-state

acquisition (FIESTA) by General Electric, true fast imaging with 

steady-state precession (FISP) by Siemens, balanced fast field echo

(FFE) by Philips, and true steady-state free precession (SSFP) by

Toshiba. CISS is mainly used in the assessment of the central nervous

system, but it is also used when imaging the abdomen, the

musculoskeletal system and the breast. The last three areas are not

within the scope of this article.

How Are Constructive Interference in Steady
State Images Acquired?
When inside a magnetic resonance imaging (MRI) scanner, the randomly

moving protons in the patient’s body align along the longitudinal z-axis.

The z-axis is a magnetisation vector parallel to both the long axis of the

patient’s body and the bore of the scanner. This magnetisation force,

represented as a vector along the positive side of the z-axis, is called

longitudinal magnetisation (LM). When a radiofrequency pulse (RFP) is

applied, the magnetisation vector is tipped to the transverse plane. This

tipped magnetisation vector has two components: the LM, which

recovers, and the transverse magnetisation (TM), which decays during

each repetition time (TR) period in the x-axis.

CISS is a ‘green’ sequence. The main recycling idea is not to waste the

signal from the decaying TM in every RFP, because it is this signal that

provides the T2 properties of a given tissue. Instead of being lost, the

TM is reinforced into the transverse plane. The TM is recovered by

applying an 180° phase shift during each TR period, after which the TM

shifts in the transverse plane. The following RFP simultaneously tips a

component of the residual TM back along the z-axis and a portion of

the LM into the transverse plane (x-axis). After multiple TR periods

have elapsed, this feeding of the LM into the TM, and vice versa,

eventually establishes an equilibrium state of both the LM and the TM.

It must be stressed that it is necessary to keep the TR shorter than the

T2 relaxation time of the tissue; in this way there is insufficient time for

the TM to decay completely before the next RFP excitation. To achieve

CISS images, residual TM is always necessary. Once the equilibrium is

reached, two types of signal are produced: the first is a post-excitation

signal, which consists of free induction decay arising from the most

recent RFP, and the second is the echo reformation prior to excitation,

when residual echo is refocused at the time of the subsequent RFP.

There are three main types of fast GRE sequence: spoiled, partially

refocused and fully refocused. When the pre- and post-excitation

signals are lost and wasted, the resulting image is T1-weighted. When

only the post-excitation signal is acquired, the images obtained are
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very sensitive to magnetic field inhomogeneities, with a resulting T2*

(star) effect. A very similar image to CISS can be obtained by acquiring

the pre-excitation signal only. This sequence has a relatively long

echo time (TE) and therefore suffers from more flow artifacts and a

lower signal-to-noise ratio. CISS is a fully refocused fast GRE sequence

in which both pre- and post-excitation signals are sampled, with the

subsequent advantage of having a high signal-to-noise ratio and high

spatial resolution.1

Advantages of Constructive Interference in
Steady State Imaging
One of the most important advantages of steady-state imaging is the

short acquisition time thanks to the short TR and TE. With short TR and

TE, tissues with long T2 relaxation will demonstrate wider range 

and additional signals owing to various refocused echo paths. Other

advantages are the high signal-to-noise ratio and better 

contrast-to-noise ratio. Additionally, CISS images do not present

significant susceptibility-, motion-, or flow-related artifacts.2

Uses of Constructive Interference in 
Steady State
CISS is widely used to assess the cranial nerves (CNs). The CNs were

first studied by CISS at the beginning of the 1990s, and the first CNs

studied were the facial (CNVII) and vestibulocochlear (CNVIII) nerves.3

Owing to its cisternographic effect, CISS provides finely detailed

images of the CNS, especially of their cisternal and canalicular

portions (see Figures 1 and 2).

In cases of pulsatile tinnitus or facial spasms, CISS plays a major 

role in the assessment of vascular loops compressing the nerves in the

cerebellopontine angle cistern (CPA) or inside the internal auditory

canal (IAC) (see Figure 3).4 This sequence is also useful to study masses

in the CPA cistern, especially in cases of hearing impairment.5

The Cranial Nerves
The Olfactory and Optic Nerves
CISS can be used in the evaluation of the olfactory nerve (CNI). It

provides better results than 2D turbo spin echo, although not

significantly better in comparison with ultrafast spoiled gradient echo

3D imaging (multiplanar gradient-recalled [MPGR]/magnetisation-

prepared rapid acquisition gradiant echo [MPRAGE]).6 CISS provides

similar results to MPRAGE in the assessment of the optic nerve (CNII),

although MPRAGE is superior to CISS for studying the optic chiasm

and tract.7

The Oculomotor Nerve 
The oculomotor nerve (CNIII) is readily seen from the interpeduncular

fossa to the cavernous sinuses (see Figure 4).8 The CNIII runs between

the posterior cerebral artery (PCA) and the superior cerebellar artery

(SCA) and innervates the extraocular muscles, including the elevator

muscle of the upper eyelid, except for the superior oblique and the

lateral rectus muscles. CISS can potentially be used to rule out

aneurysms arising from the posterior circulation or from the posterior

communicating artery that impinge on the CNIII.9

The Trochlear Nerve 
The trochlear nerve (CNIV) is the longest intracranial nerve, although

it is the smallest in terms of number of axons. It originates in the

dorsal aspect of the midbrain and innervates the superior oblique

muscle. It runs posteriorly and inferiorly around the Sylvian aqueduct

and decussates at the level of the superior medullary velum. CNIV

exists beneath the inferior colliculus, opposite its nucleus of origin.

The cisternal segment of the CNIV parallels the courses of the SCA,

the PCA, and the basal vein of Rosenthal, passing between the PCA

and the SCA, piercing the dura and reaching the cavernous sinus. CISS

Figure 1: Axial Constructive Interference in Steady 
State Image of the Posterior Fossa at the Level of the
Inner Ear Demonstrating the Normal Anatomy of 
the Cisternal and Canalicular Portions of the Seventh
and Eighth Nerves

Cochlear nerve

Facial nerve

Vestibulocochlear nerve

Figure 2: Sagittal Constructive Interference in Steady
State Image Through the Internal Auditory Canal,
Showing the Facial, Cochlear and the Superior and
Inferior Vestibular Nerves

Cochlear nerve

Superior vestibular
nerve

Inferior vestibular
nerve

Facial nerve

Figure 4: Axial Constructive Interference in Steady State
Image at Level of Interpeduncular Fossa Demonstrating
the Cisternal Portions of the Oculomotor Nerves

Figure 3: Axial Constructive Interference in Steady State
Images of the Posterior Fossa, Centered at the Right
Inner Ear, in a Patient with Pulsatile Tinnitus

There is an anterior inferior cerebellar artery loop inside the right internal auditory canal
(arrow) in close association with and likely compressing the seventh and eighth nerves.

Arrow showing the right oculomotor nerve (CNIII).
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allows accurate identification of the cisternal segment of the CNIV and

its neurovascular relationships in the vast majority of cases.10

The Trigeminal Nerve
The trigeminal nerve (CNV) is the largest CN in terms of number of

axons. It is mainly a sensory nerve of the face and has three main

divisions. The first (V1) and second (V2) divisions (ophthalmic and

maxillary) are purely sensory, while the third (V3) (mandibular) carries

both sensory and motor fibers. The motor component of V3 is

responsible for muscle mastication, the tensor tympani, the tensor

veli palatini, the mylohyoid, and the anterior belly of the digastric

muscle. In Meckel’s cave the three branches converge, with the cell

bodies of incoming sensory nerve fibers located in a ganglion (the

Gasserian or semilunar ganglion). The main roots of CNV and 

the Gasserian ganglion can be finely depicted by CISS in the

prepontine cistern (see Figure 5) and in Meckel’s cave, respectively.11

In cases of trigeminal neuralgia, CISS plays an important role in

searching for vascular compressions.12

The Abducens Nerve 
The abducens nerve (CNVI) innervates the lateral rectus muscle. It

leaves the brainstem at the pontomedullary junction, then courses

superiorly through the prepontine cistern and bends anteriorly to enter

the Dorello’s canal at the tip of the petrous apex. It is the only CN that

is truly inside the cavernous sinus. The course of the abducens nerve

and its relationship to the adjacent vessels can be reliably identified

using CISS in the vast majority of cases (see Figure 6).13

The Lower Cranial Nerve Complex
The glossopharyngeal nerve (CNIX), the vagus nerve (CNX), and the

cranial component of the spinal accessory nerve (CNXI) form 

the lower cranial nerve complex (LCNC). The nuclei of the LCNC are

located in the medulla oblongata. These nerves arise from the

medulla oblongata in the post-olivary sulcus as small rootlets in a

linear array.14

The Glossopharyngeal Nerve 

CNIX has both a cranial component and a spinal root, with a very

complex physiology and numerous functions. It originates from the

anterior and lateral portion of the medulla in the groove between 

the inferior olivary nucleus (ION) and the restiform body. It carries

sensory information from the posterior third of the tongue, tonsils,

pharynx and middle ear and supplies parasympathetic stimuli to the

parotid gland. Additionally, it receives sensory fibers from the carotid

bodies and supplies motor fibers to the stylopharyngeus muscle. CNIX

passes anterior to the choroid plexus and cerebellar flocculus. It is the

only nerve that enters the jugular foramen through the pars nervosa,

which is a funnel-shaped dural meatus medial to the jugular spur (see

Figure 7). The inferior petrosal sinus can be used as a landmark to

identify CNIX, which is anterior to the glossopharyngeal meatus.14

The Vagus Nerve 

CNX is the longest cranial nerve. It innervates the larynx, oesophagus,

heart, lung, stomach, and intestines. On leaving the medulla between

the ION and the inferior cerebellar peduncle, it extends through the

pars vascularis of the jugular foramen, then passes into the carotid

sheath to lie between the internal carotid artery and the internal jugular

vein. The great majority of fibers composing CNX are afferent (sensory),

conveying information from the viscera to the central nervous system.

It supplies all of the intra-abdominal organs, with the exception of the

Imaging
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Figure 5: Sagittal Oblique Reformatted Constructive
Interference in Steady State Image Centred at the Level
of the Prepontine Cistern

The normal cisternal portion of the abducens nerve (arrow) is seen. The oculomotor nerve
(arrowhead) is seen between the posterior cerebral artery (top) and the superior cerebellar
artery (bottom).

Figure 6: Axial Constructive Interference in Steady 
State Image at the Level of the Facial Coliculli (Small
Arrows) Demonstrating both Trigeminal Nerves in their
Cisternal Portions

Figure 7: Axial Constructive Interference in Steady 
State Image at the Level of the Jugular Foramen
Showing the Glossopharyngeal Nerve (Large Arrow)
Entering the Pars Nervosa of the Jugular Foramen in 
the Left Side (Small Arrow)

**

*

The glossopharyngeal nerve is seen anterior to the choroid plexus (arrow head) and to the
flocullus cerebelli (dashed arrow). 
*Internal carotid artery. **Jugular bulb.

Figure 8: Axial Constructive Interference in Steady State
Image at the Level of the Inferior Olivary Nucleus
Showing the Normal Left Vagus Nerve

The two rootlets of the vagus nerve (large arrow) are seen posteriorly to the
glossopharyngeal nerve (small arrow) entering the pars vascularis of the jugular foramen.

Note the normal anatomy of the right trigeminal nerve (CNV; large arrow).

Goncalves_Relayout_EU Neuro  28/06/2011  16:57  Page 140



adrenal glands and the distal second segment of the transverse colon.

CNX is seen in its cisternal portion before entering the jugular foramen

as one or two main roots (see Figure 8) at the level of the vagal trigone

(a small bulge in the caudal portion of the floor of the fourth ventricle

caused by the dorsal motor nucleus of CNX).14

The Spinal Accessory Nerve 

CNXI has both a cranial and a spinal component. CNXI is purely

motor, innervating the sternocleidomastoid and trapezius muscles.

CNXI is not easily visualised, and in some situations coronal oblique

reformats are necessary. However, root bundles that enter the pars

vascularis but do not join the one or two main vagal roots can be

classified as CNXI. The spinal roots of CNXI are those that rise

through the foramen magnum and traverse the posterior fossa to

reach the pars vascularis.14

The Hypoglossal Nerve
The hypoglossal nerve (CNXII) is a pure motor nerve that 

innervates the intrinsic and extrinsic tongue muscles (see Figure 9).

The nucleus of CNXII is located medially to the dorsal nucleus of CNX

and lies within the posterior and inferior aspects of the medulla

oblongata. It lies close to the midline in the floor of the fourth

ventricle, causing a focal bulge. CNXII exits the brainstem between

the ION and the pyramid in the pre-olivary sulcus. The vertebral and

posterior inferior cerebellar arteries are anterior and posterior to the

cisternal portion of the CNXII, respectively.15

Cysts and Cystic Lesions
CISS is the sequence of choice to study cystic structures. Its application

ranges broadly from the assessment of Virchow–Robin spaces (VRS) to

the evaluation of cystic tumours such as dysembryoplastic neuroepithial

tumours (DNET). 

Virchow–Robin Spaces
VRS are an extension of the subarachnoid space that surround the

walls of arteries, arterioles, veins, and venules. The VRS signal should

always follow that of the cerebrospinal fluid in all pulse sequences and

should not enhance. Typically, VRS can occur in three locations: along

the lenticulostriate arteries, inferior to the basal ganglia at the level 

of the anterior perforated substance (type 1); in the path of the

perforating medullary arteries in the convexities, extending into 

the white matter (type 2) and in the midbrain (type 3) surrounding the

collicular, accessory collicular, and thalamoperforating arteries, in the

pontomesencephalic junction, and between the cerebral peduncles

(see Figure 10).16

VRS are typically seen as well-defined oval, rounded, or tubular

structures, depending on the plane in which they are imaged. They

have regular margins, are commonly bilateral, and may be called

enlarged when they measure more than 2 mm.17 They can be atypical,

presenting in clusters, or markedly large, causing mass effects, with

odd shapes. They can even be misinterpreted as other pathologic

processes, most often a cystic neoplasm. Although benign in some

situations, dilated VRS can present with hydrocephalus due to

compression of the cerebral aqueduct.16

The Vestibular System
CISS can play an important role in cases of sensorial hearing loss and

also to study the vestibular system. It delivers fine detail when

imaging the semi-circular canals and otolith organs (see Figure 11).17
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Figure 9: Axial Constructive Interference in Steady State
Image Showing the Oblique Course of the Hypoglossal
Nerve (Large Arrow) as it Crosses the Lateral
Perimedullary Cistern and Enters the Hypoglossal Canal
(Small Arrow)

Figure 10: Axial Constructive Interference in Steady
State Image at the Level of the Interpeduncular Fossa
Showing the Usual ‘Comet Tail’ Appearance of a Dilated
Perivascular Space in the Left Cerebral Peduncle

Figure 11: Maximum-intensity Projection of a Normal
Membranous Labyrinth Using Constructive Interference
in Steady State Images

Figure 12: Sagittal 3D Constructive Interference in
Steady State Reformatted Image at the Level of the
Fourth Ventricle Showing an Intraventricular
Cysticercus with a Scolex within It (Arrows)
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Neurocysticercosis
CISS is extremely useful for evaluating patients with neurocysticercosis

(NCC), especially if the cestode is located in the ventricular system or

subarachnoid space. CISS is the best single modality to depict the

scolex inside the cysticercus cyst, particularly in the first stage of 

the disease when the cysticercus is antigenically non-viable and

neither enhancement nor oedema is noted (see Figure 12). 

In the second and third stages of NCC, the scolex may or may not be

identified. In the fourth (involutional) stage, CISS is not adequate and

other MRI sequences are more suitable for characterising the

calcifying cystercus.18

Hydrocephalus
CISS is useful in patients with hydrocephalus. It is an excellent tool

for assessing the cerebral aqueduct because it is capable of

demonstrating minute membranes that may be seen in cases of non-

communicating hydrocephalus.19

The Spine
The use of CISS for spinal abnormalities is a more recent development.

This sequence can be useful for characterising both intra- and

extramedullary cystic abnormalities.20 CISS can also be used to study

the architecture of arteriovenous fistulas.21

Conclusion
In summary, CISS imaging is useful in the study of CNs, most notably

when vascular compression tumours are suspected. CISS may also

be of particular use in sensorineural hearing loss, for characterising

the content of a cystic mass, and in cases of NCC. More recently,

CISS has proved to be beneficial in spine imaging, especially in cases

of intraspinal cystic lesions and arteriovenous malformations. n
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in clinical neurophysiology, interactive case presentations and selected scientific sessions 
in the form of oral and poster sessions.

   Abstract submission deadline: 26 January 2012
   Early registration deadline: 22 March 2012

For further information please contact:
ENS 2012, c/o Congrex Switzerland Ltd.
Peter Merian-Strasse 80, 4002 Basel / Switzerland
Phone +41 61 686 77 77 Fax +41 61 686 77 88
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