
Stroke is the third leading cause of death in the US, affecting

approximately 795,000 patients annually.1 A recent analysis shows

that only 3–5 % of acute stroke patients actually receive intravenous

thrombolytic therapy.2 An important cause of non-treatment is the

strict time criteria for acute medical and interventional therapies:

many acute stroke patients are ineligible for treatment due to

uncertainty in time of onset or delayed presentation. 

The use of strict time criteria to make treatment decisions is not ideal

since there are significant differences among individuals and their

responses to an acute vascular event.3 The goal of advanced

neuroimaging is to individualise acute stroke treatments based on

assessment of tissue viability and vascular status rather than using

strict time criteria alone. Acute intervention or treatment may be

refined through improved selection of subjects likely to benefit

balanced by the risk of potential harm, irrespective of the time of

presentation.3 Multimodal computed tomography (CT), including 

non-contrast CT (NCT), CT angiography (CTA) and CT perfusion (CTP),

is increasingly available and may serve as an ideal tool for rapid image

evaluation and triage of the stroke patient.

The goal of a multimodal CT protocol in acute stroke is to answer four

key questions:4

•   Is there haemorrhage?

•   Is there occlusion of a proximal artery or intravascular thrombus

that can be targeted for thrombolysis?

•   Is there a core of critically ischaemic irreversibly infarcted tissue?

•   Is there a penumbra of ischaemic, but potentially 

salvageable, tissue?

The first question is readily addressed by NCT and the second

question is addressed by CTA. The last two questions are the most

challenging and may potentially be addressed by CTP.5

Technique
The first component of the multimodal CT acquisition is the 

non-contrast head CT. Axial images through the brain are obtained in

a plane parallel to a line drawn from the orbital floor to the external

auditory meatus using 120 kVp, 300 mA and a 23 cm field of view.

Next, the perfusion scan is performed with injection of 50 ml of

intravenous iso-osmolar non-ionic iodinated contrast at 5 ml/second.

The use of iso-osmolar contrast agents as opposed to low-osmolar

contrast agents is preferred in order to minimise nephrotoxity.6,7 This

is important because the patient’s baseline renal function may not be

available at the time of the emergent scan and there may be potential

for the patient to receive additional iodinated contrast if endovascular

intervention is needed. With our current 64-channel CT scanners,

perfusion imaging is performed at six axial 4.8 mm-thick slices

centered above and below the caudate head. Images are obtained

with 80 kVP and 120 mA for 45 seconds. Finally, a CTA of the brain and

neck is performed with intravenous injection of 100 ml of contrast at

3 ml/second utilising a 120 kV and 300 mA technique and bolus

tracking on the ascending aorta with a scan trigger of 150 Hounsfield
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units. Axial 0.625 mm slices are obtained from the thoracic inlet to the

skull vertex. The CTP and CTA images are post-processed on a

separate networked workstation. On average, image acquisition,

processing and interpretation can be performed in 15 minutes.8

Non-contrast Computed Tomography
The non-contrast head CT comprises the first set of images obtained in

the acquisition of multimodal CT imaging. The primary purpose of the

NCT is identification of haemorrhagic stroke, which accounts for

approximately 20 % of all acute strokes.9 Stroke mimics such as tumour,

infection or inflammatory causes may also be detected on the 

non-contrast head CT. Important information regarding parenchymal

changes associated with hyper-acute ischaemic stroke may also be

detected from the non-contrast study. In the less-than-six-hour time

window from symptom onset, signs of early infarction can be seen in

approximately 61–85 % of patients.10,11 The appropriate use of window

(W) and level (L) settings is required to detect the subtle findings

associated with early ischaemic changes. It is recommended that

images are reviewed with both standard brain window and level

settings of 40 HU W/20 HU L followed by repeat evaluation with a

narrower setting of 20 HU W/32 HU L.12 Findings that have been

associated with early ischaemic change on CT include subtle 

hypo-attenuation, obscuration and loss of gray matter–white matter

differentiation, cortical sulcal effacement, loss of the insular ribbon and

obscuration of the lentiform nucleus. Concomitant findings in the

vessels may include hyper-attenuation of a large vessel such as

‘hyperdense middle cerebral artery (MCA) sign’ or ‘dot sign’ in an M2

branch13–15 (see Figure 1).

These early CT findings in acute ischaemic stroke are helpful not only

for confirming the diagnosis of acute ischemia but also useful for

predicting patient outcome and response to thrombolytic therapy.16–20

For example, the hyperdense MCA sign in acute stroke patients has

been associated with poor outcomes and, in some studies, failure to

recanalise with intravenous (IV) thrombolytics.14,21 The extent of early

ischaemic change in the MCA territory also plays an important role in

patient prognosis and safety of IV thrombolytics. Studies show an

increased risk for symptomatic intracranial hemorrhage with IV

thrombolytics when more than one-third of the MCA territory

demonstrates ischaemic change on an NCT.17,19,20,22,23 In order to more

reliably quantify the extent of early ischaemic abnormality, the Alberta

Stroke Program Early CT Score was designed for the MCA territory.

This system divides the MCA territory into 10 regions: caudate head,

lentiform nucleus, insular ribbon, internal capsule and anterior,

middle and posterior, superior and inferior MCA territories. In this

system a score of 10 is considered normal. A score of seven or less

indicates the presence of extensive early ischaemic change and thus

the potential for increased risk for haemorrhagic transformation.24

Other findings on NCT may provide useful insight into a patient’s

medical history. This is especially important in the acute setting since

obtaining a patient’s past medical history is often difficult. From the

non-contrast scans, evaluation for vascular calcifications, lacunar

infarcts and periventricular white-matter hypo-attenuation can be

highly suggestive of underlying vascular risk factors such as 

diabetes, hypertension, hyperlipidaemia, chronic renal disease and/or

significant smoking history.25–30 Also, the presence of prior cortical

infarcts, especially in different vascular territories, will significantly

increase the probability of an embolic stroke aetiology.

Computed Tomography Angiography
With current 64-channel multidetector CT (MDCT) technology, rapid

high-resolution imaging of the vasculature from the aortic arch to the

skull vertex can be performed in about four to six seconds with

diagnostic quality near that of conventional digital subtraction

angiography (DSA).31,32 Compared with DSA, CTA demonstrates a

sensitivity and specificity of 98.4 and 98.1 %, respectively, for vascular

patency of the intracranial arteries from the internal carotid artery to

the proximal vessels of the circle of Willis and the sylvian MCA vessels.33

The intracranial vessel status depicted by CTA has been shown to have

prognostic value in response to IV tissue plasminogen activator (tPA).

The presence of proximal MCA occlusion compared with distal MCA

occlusion or no occlusion to the M3 level on CTA has been shown to be

a predictor of worse clinical outcome in patients receiving IV tPA.34

Other studies using CTA have shown that there is little benefit from IV

recombinant tPA (rtPA) in patients who demonstrated poor collateral

flow by CTA, spontaneous recanalisation or proximal ‘top of internal

carotid artery (ICA)’ saddle emboli.34,35 Due to the poor response to IV

tPA in patients with proximal intracranial vessel occlusions, some

researchers are investigating early intra-arterial (IA) tPA in the 

less-than-three-hour time window based on CTA.36

The neck CTA component also provides important additional

information for the management of an acute stroke patient. Carotid

atherosclerosis accounts for approximately 30 % of all ischaemic

strokes.37 Carotid stenosis detected by CTA is comparable to that

measured by DSA, with a sensitivity of 100 % and specificity of 95 %

when the axial source images (SIs) are used.38 In addition, CTA provides

direct characterisation of the atherosclerotic plaque, depicting

ulceration, the soft and calcified components and the thickness of the

fibrous cap.39 Near-occlusive carotid stenosis, a potential pitfall for

carotid Doppler ultrasound, can also be detected by CTA.40 CTA of the

neck is also capable of depicting cervicocephalic dissections, a

common cause of acute stroke in young patients.41,42

CTA images should be analysed in a systematic process given the large

size of the data set. In the setting of acute stroke, detection of vessel

occlusion is of paramount importance. This is most rapidly

accomplished by reviewing the coronal maximum-intensity projection

(MIP) re-formatted views that are readily available at the console on

most scanners. Large vessel occlusions involving the ICA, intra-dural

vertebral arteries, basilar artery, M1, A1 and P1 are readily identified

on coronal MIP views. If an abnormality explaining the patient’s

symptoms is not readily apparent, careful review of the axial SIs, with

the use of both 3-D and thick MIP re-formatted views, on a dedicated

3-D workstation, is recommended. A common pitfall in the

Brain Trauma  Stroke

E U R O P E A N  N E U R O L O G I C A L  R E V I E W102

Figure 1: Early Infarct Signs

A B C

A: Loss of gray–white differentiation of the right insular ribbon. B: Sulcal effacement and
subtle loss of gray–white differentiation in the right middle cerebral artery territory. 
C: Obscuration of the right caudate head and lentiform nucleus.
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interpretation of CTA is missing an occlusion because retrograde

opacification of the vessels distal to the occlusion via collaterals makes

the detection of a focal occlusion challenging (see Figure 2). After

identification of the vascular lesion it is important to note the status of

the collateral circulation from Willisian and leptomeningeal collaterals.

In addition to evaluating the vasculature, source CTA images provide

valuable information about perfusion through the brain parenchyma.

This is an underutilised feature of CTA, since most multimodal CT

protocols incorporate CTP imaging for a detailed evaluation of the

brain parenchymal perfusion. However, CTA SIs may be helpful if 

the area of concern is not covered in the CTP images, especially with

regard to the posterior fossa. CTA SIs have been shown to be superior

to NCT for detecting acute ischaemic changes of the posterior

circulation.43,44 Also, the CTA SIs are helpful when the CTP images are

limited by patient motion or inappropriate contrast bolus. When

interpreting parenchymal changes on CTA SIs, attention has to be paid

to the scanner on which they are acquired. With the earlier-generation

16-channel or fewer MDCTs, they have been shown to be more

representative of cerebral blood volume and have correlated well with

diffusion-weighted imaging (DWI) abnormalities seen on magnetic

resonance imaging (MRI).45,46 However, with current 64-channel MDCT,

due to the rapid image acquisition, lesions seen on CTA SIs more

closely approximate cerebral blood flow (CBF) lesion volumes seen on

CTP. Regardless of the scanner, CTA SIs are superior to CT in the

detection of early ischaemic changes, as shown in Figure 3.

Computed Tomography Perfusion
CTP is the most complex component of multimodal CT for acute

stroke. It has been shown to increase sensitivity for diagnosing 

acute ischemia compared with CT and CTA alone.47 In addition, CTP

has the possibility of differentiating the infarct core from the ischaemic

penumbra. A recent study suggests CTP can be used to predict benefit

after thrombolysis.48

The three main CTP parameters used to evaluate acute stroke

patients are cerebral blood volume (CBV), CBF and mean transit time

(MTT). These parameters are related to each other by the central

volume principle, which states that CBV = CBF x MTT.49 CBV

represents the volume of blood per unit brain mass (ml per 100 g of

brain tissue). MTT represents the time difference from arterial inflow

to venous outflow (seconds). CBF represents the volume of blood per

minute moving through a unit of brain mass (ml/minute per 100 g of

brain tissue). These parameters are calculated from the source data

most commonly by using a mathematical process known as 

delay-insensitive or delay-compensated deconvolution.5,50 However,

other non-deconvolution-based methods exist and a formal

comparison of the various methods has not yet been performed.5,50

The exact method to derive these parameters varies between

vendors. In the deconvolution method, a point is chosen for the

arterial input function and another point for the venous outflow

function. Typically the A2 segment is selected for the arterial input

function and the posterior superior sagittal sinus is selected for

venous outflow, although this is also a debated issue.49,51 A normal CTP

scan is shown in Figure 4.

There is considerable debate as to which CTP parameters best depict

infarcted tissue from surrounding ischaemic penumbra.5 In one

theoretical model, there is a proposed failure of autoregulation of

cerebral perfusion in infarcted tissue. As a result, in infarcted regions
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Figure 2: Computed Tomography Angiogram
Demonstrating an M2 Occlusion

A B

Collateral flow allows for visualisation of the segmental middle cerebral artery branch distal
to the occlusion, making detection of the lesion more challenging without the use of (A)
sagittal thick maximum-intensity projection and (B) 3-D shaded surface volume rendering.

Figure 3: A Patient with Acute Left Middle Cerebral
Artery Territory Stroke

A B

A: Non-contrast computed tomography (CT) demonstrates subtle loss of gray–white
differentiation in the left fronto-parietal region. B: CT angiography (CTA) source image (SI)
better depicts the acute ischaemic change in the left fronto-parietal region.

Figure 4: A Normal Computed Tomography 
Perfusion Scan

CBV

MTTCBF

The top left image demonstrates the selection of the arterial input function (red dot) in the
A2 segment and the venous output function (blue dot) in the superior sagittal sinus. The
normal symmetric cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit
time (MTT) are shown.
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the CBV is decreased because of failure of vasodilatation and lack of

increased collateral flow. Correspondingly, CBF is decreased and MTT

is increased, while in ischaemic penumbral tissue autoregulation is

still intact, which results in vasodilatation and recruitment of

collaterals to compensate for the decreased CBF. As a result, the CBV

is normal or increased while the CBF is decreased and

correspondingly the MTT is increased. As a practical matter, since

gray and white matter CBF values at baseline differ significantly (70

ml/minute/100 g in gray matter compared with 20 ml/minute/100 g in

white matter) but MTT values between gray and white matter are not

as variable (five seconds for gray matter and six seconds for white

matter), MTT images are more sensitive to detect ischaemic changes

from baseline perfusion.52–54

An alternative hypothesis that results in similar changes in CBV, CBF,

and MTT in the infarct core and penumbra implies the changes are

primarily secondary to venous collapse in the infarcted tissue versus

venous dilation in the penumbral tissue.3 Wintermark et al. confirmed

these predicted changes in CTP parameters in one of the largest 

trials, evaluating data from 130 patients using receiver operating

characteristic (ROC) curve analysis. They found that areas defined by

an absolute CBV less than 2.0 ml/100 g best depicted the infarct 

core while regions defined by a relative MTT increase of 145 %

compared with the contralateral normal side best depicted the

ischaemic penumbra. Since there are known differences between

vendors in the processing of CTP data, the use of absolute thresholds

is of limited value for generalisation purposes. As such, current

expert opinion favours the use of relative CTP values.50 In this regard,

the evaluation of infarct core proposed by Wintermark et al. may be

best approximated by CBV values decreased by 65 % relative to the

normal contralateral side.52 Other proposed methods to depict infarct

core from penumbra include absolute and relative CBF thresholds

and CBF x CBV thresholds.55–58

At our institution, in the management of acute stroke patients we

find colorimetric CTP parameter maps adequate for clinical

decision-making. The perfusion images are always interpreted in

the context of the clinical presentation and the vascular lesion

based on the CTA. 

Mismatch is determined by comparing the decreased CBV lesion with

the prolonged MTT lesion by visual inspection. A typical case is shown

in Figures 5A and 5B. In select cases where the ischaemic lesion is

small, selective regions of interest (ROI) are drawn to perform a more

quantitative analysis for confirmation, as shown in Figures 5C and 5D.

In the future, the analyses may become more automated, allowing for

standardised post-processing and interpretation.59

One of the main limitations of CTP currently is its limited coverage.

Most CTP protocols are centered at the basal ganglia and focus on

coverage of the MCA territories. This is particularly problematic if the

patient has posterior circulation ischemia, which may be missed

because it was not imaged. Preliminary work with 256-channel MDCT

demonstrates the feasibility of whole-brain CTP with associated

radiation dose reduction as well.60 Another limitation of CTP is its

limited ability to detect small infarcts. This can be problematic as

small infarcts in eloquent locations can result in significant neurologic

deficits. Additionally, detection of acute ischemia superimposed on

chronic infarct or severe periventricular white matter ischaemic

changes can be difficult.51 Lastly, CTP interpretation can be limited

when there are bilateral vascular lesions, making comparison with the

contralateral side difficult. In this situation the use of absolute

thresholds may be useful.

Conclusion
Multimodal CT for the evaluation of acute stroke is becoming

increasingly important as there continues to be a growing need to

rapidly diagnose acute stroke patients. It is an ideal tool for imaging

acute stroke patients in the community given its widespread availability

and its rapid image acquisition. Multimodal CT demonstrates good

sensitivity and specificity in diagnosing acute stroke. 

There is also hope that the CTP component of multimodal CT will be

able to discriminate among acute stroke patients by determining

those who will likely benefit from intervention from those who

would not, regardless of their time of presentation. Considerable

work still needs to be undertaken in this regard to standardise the

processing and interpretation of CTP images. n
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Figure 5: Examples of Computed Tomography (CT)
Angiography and CT Perfusion to Evaluate Acute Stroke

A

B D

C

MTT

CBV

CBF

A: Computed tomography angiography (CTA) coronal multiplanar maximum-intensity
projection (MIP) demonstrates a patient with a T-shaped internal carotid artery (ICA)
occlusion involving the supra-clinoid ICA (red arrow), right M1 (green arrow) and right A1
(blue arrow). B: CT perfusion (CTP) scan of the patient demonstrates decreased cerebral
blood volume (CBV) and cerebral blood flow (CBF) with prolonged mean transit time (MTT) in
the right middle cerebral artery (MCA) territory consistent with infarction. There is prolonged
MTT in the right ACA territory but with preserved CBF, consistent with decreased perfusion
without completed infarction. C: CTA sagittal MIP demonstrates an inferior left M2 branch
occlusion (blue arrow). D: CTP demonstrated through the use of region of interest (ROI)
quantitative measurements shows the CBV is approximately 70 % of the normal
contralateral side, suggesting severe ischemia/early acute infarct. The MTT abnormality is
larger, indicating the presence of some ischaemic penumbra.
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