
For decades, the primary approach and goal of therapy for stroke and

neural injury have been the treatment of the injured tissue, with

intervention designed to reduce the volume of cerebral infarction.

Enormous effort has gone into the development of neuroprotective

agents, including free radical scavengers,1–3 glutamate antagonists,4,5

among a myriad of others.6–8 Neuroprotective agents developed in the

laboratory were translated into clinical trials and all have failed.9,10

Reasons for these failures are multifaceted and in part may be

attributed to inadequate, and often unrealistic, treatment protocols

associated with dosing and time of administration, naively translated

from preclinical studies to the clinic. The only agent that has been

developed and is now in clinical use for the treatment of stroke is

recombinant tissue plasminogen activator (rtPA) employed for

thrombolysis.11,12 rtPA is, however, not a neuroprotective agent, but,

essentially an agent that improves tissue perfusion by lysing the

offending clot. The therapeutic window for rtPA, however, is merely

4.5 hours,13 and until recently only three hours.14,15 However, currently

in the US, fewer than 5 % of patients receive rtPA, with the primary

reason being the relatively short therapeutic window.16 In addition,

rtPA has a serious adverse side effect of increasing the rate of

haemorrhagic transformation.17 rtPA also cannot be employed 

for haemorrhagic stroke. Therefore, there is a compelling need to

develop therapeutic agents whose use extends well beyond the first

few hours of stroke and can be employed to treat all stroke patients.

These agents would be designed for treatment days and weeks 

after stroke. To do this requires a paradigm shift away from

neuroprotective agents for stroke that treat the ischaemic lesion, to

that of neurorestorative agents which treat the intact or compromised

cerebral tissue, to promote brain plasticity and thereby remodel the

brain to compensate for the damaged tissue. In this article, we will

review select ways to stimulate brain plasticity post-stroke and

thereby improve functional outcome.

The majority of stroke patients, particularly younger patients, show

improvement in neurological function over time. This improvement may

be associated with compensatory processes, which may be attributed to

the induction of brain plasticity.18 Post-stroke or brain injury, cerebral

tissue is primed for recovery. The injured and affected cerebral tissue, in

various ways reverts to a quasi-ontogenous or developmental state,

expressing genes and proteins that are developmental and that lead to

brain remodeling.19 In this quasi-developmental state, angiogenesis,

neurogenesis and synaptogenesis are evident. These restorative

processes that are interdependent essentially remodel the brain and

lead to improved neurological function. However, these restorative

processes are often inadequate to fully restore neurological function

and many stroke patients are left with severe neurological deficits. The

essential question therefore is, whether we can amplify these

restorative processes so that neurological function can be enhanced

post-stroke. In this article, we will briefly describe ways to do this. 

Cell-based and pharmacological therapies can stimulate essential
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restorative processes and thereby lead to improvement in neurological

function. We will describe preclinical work and review the applications of

these cell-based and pharmacological restorative approaches to the

stroke patient.

Cell-based Therapies for Stroke
Cells are essentially a living polypharmacy, providing multiple

restorative factors that are biologically titrated to the needs of the

tissue. Although stem cells have the capacity to differentiate into all

cells,20,21 their use, thus far for the treatment of stroke, is not connected

with this differentiation. Exogenously administered cells appear to

stimulate endogenous restorative processes and do not replace

injured cerebral tissue.22–24 The administered cells release many trophic

factors and more importantly stimulate parenchymal cells, primarily

astrocytes, to produce proteins that amplify brain plasticity.25,26 We, and

others, have shown that exogenously administered cells delivered by

a vascular route greatly amplify the generation of neuroblasts in the

subventricular zone.27 These neuroblasts migrate to the site of injury

and interact with cerebral vasculature, particularly angiogenic

vessels.28,29 Concurrently, angiogenesis is upregulated, primarily in or

near to the boundary zone of the ischemic lesion.30,31 These angiogenic

vessels produce an array of factors, including brain-derived

neurotrophic factor (BDNF) and vascular endothelial growth factor

(VEGF), which promote neurogenesis.32,33 Therefore, angiogenesis and

neurogenesis are coupled restorative systems. The angiogenic 

vessels promote differentiation of the neuroblasts and the neuroblasts

promote further angiogenesis and upregulate the expression of

agents, such as angiopoietin 1, which leads to the maturation of the

newly formed vasculature.34 Concurrent and likely driven by these

processes, is an extensive amplification of neurite outgrowth and

increased axonal density.35,36 These rewiring events are present in the

ipsilateral hemisphere,37,38 as well as in the contralateral hemisphere

and there is a robust and highly significant correlation between neurite

outgrowth and functional recovery, particularly in the contralateral

hemisphere.39,40 Of substantial interest, it should be noted that not only

is there bilateral cerebral hemisphere response and plasticity to cell

therapy, but, also there is neurite outgrowth in the spinal cord, with

axonal extension from the intact to the denervated cord and enhanced

plasticity of the cortical spinal tract, which robustly correlate with

improvement of neurological function post-stroke.41 Thus, cell

therapies amplify endogenous restorative events that facilitate

neurological recovery. There have been many studies using a large

variety of cells for the treatment of experimental stroke, ranging from

adult mesenchymal cells,18,42,43 to cord blood,44 cord tissue45 and an

array of progenitor and stem cells,46,47 including embryonic stem cells.48

The transplantation of stem/progenitor cells is a key element in the

rapidly growing field of regenerative medicine. Based on their ability

to rescue and/or repair injured tissue and partially restore organ

function, multiple types of stem/progenitor cells have already entered

into clinical trials. Safety for various cells has been demonstrated in

stroke patients. Several institutions have carried out Phase I clinical

trials with intravenous autologous bone marrow transplantation for

stroke patients and have reported preliminary results.49–52

Pharmacological Therapy for 
Recovery of Function
Cells are not the only means by which to stimulate recovery via the

induction of brain plasticity. There are a number of pharmacological

agents, some of which mimic or reflect developmental processes, which

promote brain recovery. Trophic factors, such as BDNF,32,53 hepatocyte

growth factor (HGF)54,55 and granulocyte-macrophage colony-stimulating

factor (GM-CSF)56, and other agents such as minocycline57 have been

demonstrated to provide restorative therapeutic benefit in preclinical

studies and have moved into clinical trials.58,59

Our laboratory has pioneered the use of phosphodiestrase 5

inhibitors,60–63 statins,64–66 and agents that increase high-density

lipoproteins and hormones such as thymosin beta 4,67 erythropoietin68,69

and carbamylated erythropoietin for the treatment of stroke70 and

neural injury,71 and we have also employed the multifactor restorative

agent cerebrolysin for stroke therapy.72,73

All the pharmacological agents tested so far, which show evidence 

of being neurorestorative, induce brain plasticity, angiogenesis,

neurogenesis and synaptogenesis. The molecular and signal

transduction pathways by which these agents promote brain plasticity

have also been investigated, and they appear to activate specific

signaling pathways, such as PI3k/Akt72,74–76 and sonic hedgehog

(Shh).77,78 This article, however, is not a forum to discuss these

pathways. We focus here on the observation that pharmacological

agents by various means and multiple signal transduction pathways

can induce CNS plasticity that enhances functional recovery from

stroke and neural injury.

The translation of these restorative agents from the laboratory to the

clinic has to be performed with care and laboratory testing must be

performed to simulate as close as possible clinical conditions. Not

doing so can result in failure of a trial and poor outcome for stroke

patients. The use of erythropoietin (EPO) to treat stroke provides an

example of the poor translation of laboratory studies to the clinic

leading to a negative clinical trial.79 EPO was demonstrated in multiple

preclinical studies to provide potent therapeutic benefit for the

treatment of stroke, and appeared to be a strong candidate for

translation into the clinic. The Phase III clinical trial that was performed,

however, was unsuccessful, and had to be terminated because of high

mortality and adverse effects.79 Careful comparison of the clinical trial

with the preclinical data illustrates the inadequate performance of

preclinical studies and the failure to properly test, i.e. to perform

studies in the animals that will mimic the use of the agent in the

human. Of the stroke patients in the reported clinical trial, 63.4 % were

administered rtPA, yet prior to the performance of the clinical trial,

EPO was not tested in the laboratory in conjunction with rtPA. A

subsequent study from our laboratory with the combination of rtPA

and EPO clearly demonstrated in animals the adverse effects observed

in the human trial.80 There were other flaws associated with the EPO

clinical trial, including enrollment of an unacceptably high proportion

of patients that did not comply with the inclusion criteria specified in

the treatment protocol. Therefore, because of inadequate preclinical

study and poor recruitment, a potentially important and promising

drug for the treatment of stroke has been removed from testing.

Phosphodiestrase 5 (PDE5) inhibitors are examples of an agent that

shows promising therapeutic restorative effects, when administered

24 or more hours after stroke. The studies with PDE5 inhibitors arose

because of early studies showing that agents that increase nitric

oxide (NO), donors of NO, such as diethylenetriamine NONOate

(DATA-NONOate), provide restorative therapeutic effect post-

stroke.81 Further studies demonstrated that the restorative effect to

increasing NO could be attributed to the increase of cyclic guanosine
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monophosphate (cGMP),60 a major signalling molecule. To confirm

the role of cGMP as the target for the restorative therapeutic effect

of NO, we sought another way to increase cGMP without increasing

NO. cGMP can be increased in tissue by inhibiting its hydrolysis via

PDE5.63 Therefore, by using a PDE5 inhibitor, we would increase

cGMP.82 A widely used PDE5 inhibitor is sildenafil and we have tested

sildenafil in preclinical stroke studies, demonstrating its efficacy in

young and old animals,83 with a therapeutic window of at least 30

days post-stroke.84 Our studies have led to a Phase II clinical trial

sponsored by Pfizer in which a PDE5 inhibitor is used as a restorative

agent to treat stroke.

Cerebrolysin, a peptide-based drug, is a prime candidate for the

treatment of stroke and neural injuries.73 Multiple laboratories have

demonstrated the safety and efficacy of this agent in the treatment of

experimental stroke.72,85 Cerebrolysin is presently in clinical trials and is

in common use in many countries for the clinical treatment of stroke.86

We have demonstrated that cerebrolysin induces neurogenesis and

angiogenesis in animal models of stroke and concomitantly enhances

brain plasticity and recovery from stroke.72 The full potential of this

drug as a restorative agent for the treatment of stroke and neural

injury awaits further investigation. 

In this article, we have briefly described a novel approach to the

treatment of stroke and neural injury, the use of agents to stimulate

endogenous recovery mechanisms. Although neuroprotection

remains a vital clinical target, it is our belief that therapeutic efficacy

would be maximised with a focus on neurorestoration, the

amplification of intrinsic CNS processes using cell-based or

pharmacological based therapies. The therapeutic approach should

be to minimise damage, via neuroprotective agents, and to maximise

recovery through neurorestorative agents, treating the intact brain. n
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