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Abstract
Primary intracerebral haemorrhage (PICH) originates from the spontaneous rupture of cerebral arteries as a result of chronic degenerative

alterations. Although the aetiology of PICH has not been fully elucidated, it may be the result of an interaction between genetic and

environmental risk factors. Several genetic association studies have been conducted in patients with PICH with both positive and negative

results. Most of them investigated the role of mutations in genes affecting the lipid metabolism, the coagulation processes, the

inflammation and the regulation of blood pressure. In this article we briefly discuss the majority of these studies reporting the susceptibility

genes that have been implicated in PICH.
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Primary intracerebral haemorrhage (PICH) originates from the

spontaneous rupture of small arteries as a result of chronic

degenerative changes due to chronic hypertension or amyloid

angiopathy.1 Although environmental factors are important, there is

accumulating evidence that genetic elements also contribute to the

pathogenesis of PICH.2,3 In an epidemiological study, familial clustering

of PICH was noticed, especially when involving deep brain structures,

indicating genetic predisposition to cerebral haemorrhage.4 Increased

incidence of intracerebral haemorrhage in specific animal models also

provided additional evidence for the existence of susceptibility genes.5

The importance of genetic factors was unequivocally demonstrated

with the identification of causative mutations in monogenic cases of

familial intracerebral haemorrhage. Furthermore, several association

studies have suggested the presence of susceptibility genes that

predispose to PICH (see Table 1). In this article we briefly discuss

the current state of knowledge regarding the known major and

susceptibility genes that have been implicated in PICH.

Familial Cases
Familial Cerebral Amyloid Angiopathy
Cerebral amyloid angiopathy (CAA) is caused by the deposition of

amyloid in the small and medium-sized cortical and leptomeningeal

arteries leading to intracerebral haemorrhage, ischaemic infarction or

dementia. Amyloid is caused by the aggregation of β-amyloid peptide

(Aβ) and other proteins, promoting vasculopathic changes such as

fibrinoid necrosis and microaneurysms. Aβ peptide is formed by the

proteolytic fragmentation of amyloid precursor protein. Amyloid

formation has also been reported in familial cases of CAA caused by

mutations in the cystatin C gene,6,7 the transthyretin gene8–12 or the BRI

gene.13,14 The clinical presentation of these familial cases includes

dementia, vascular cognitive decline and PICH. PICH has also been

reported in a member of a Volga-German family with Alzheimer’s

disease and a mutation in the presenilin-2 gene.15 Recently, a novel

mutation in presenilin-1 gene was also associated with early-onset

dementia of Alzheimer type and lobar PICH.16 However, most familial

cases of CAA and PICH are caused by mutations in the amyloid

precursor protein. Of note, these mutations are located in the Aβ

segment of the amyloid precursor protein, whereas mutations in the

flanking regions cause Alzheimer’s disease or ischaemic stroke. PICH

has been documented in Flemish,17 Dutch,18 Arctic,19 Iowan20 and

Italian21 CAA families. Recently, duplication of the amyloid precursor

protein gene was reported to be the cause of familial CAA presenting

with dementia and PICH.22,23

Type IV Collagen a1 Chain
Type IV collagen a1 chain (COL4A1) is an integral component of the

basement membrane in the brain vasculature and other tissues. A few

families and a sporadic case with PICH and mutations in COL4A1 have

been reported so far.24–27 Mutations in COL4A1 seem to compromise

vascular wall integrity and blood supply, leading to small-vessel diseases

including PICH, microbleeds, lacunar strokes or leukoaraiosis.24–26,28

Electron microscopy of the vascular wall in patients with COL4A1

mutations reveals structural defects of the basement membrane such

as interruptions, variable thickening and inconsistent density.28

Cerebral Autosomal-dominant Arteriopathy with
Subcortical Infarcts and Leucoencephalopathy
Cerebral autosomal-dominant arteriopathy with subcortical infarcts

and leucoencephalopathy (CADASIL) is a monogenic disorder 

caused by a variety of mutations in the Notch3 gene, which 

is responsible for cell signalling and vascular development.29 The

clinical manifestations of this disorder include migraines, transient
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Table 1: Genetic Association Studies in Primary Intracerebral Haemorrhage

Reference Gene Polymorphism Methodology Phenotype Results Comments

Nicoll et al., 199732 ApoE Apo ε2/ε3/ε4 36 CAA patients CAA-related PICH Positive ε2 allele (p=0.003)

Greenberg et al., 199833 ApoE Apo ε2/ε3/ε4 97 patients CAA-related PICH Positive ε2 allele (p=0.03)

87 controls ε4 allele (p=0.015)

McCarron et al., 199834 ApoE Apo ε2/ε3/ε4 111 patients CAA-related PICH Positive ε2 allele (p<0.01)

406 controls

Alberts et al., 199540 ApoE Apo ε2/ε3/ε4 44 patients PICH outcome Positive ε4 allele (p=0.0014)

McCarron et al., 199944 ApoE Apo ε2/ε3/ε4 74 patients PICH outcome Negative –

Garcia et al., 199941 ApoE Apo ε2/ε3/ε4 48 patients PICH Negative –

24 controls

O'Donnell et al., 200039 ApoE Apo ε2/ε3/ε4 71 patients Recurrent PICH Positive ε2 allele: OR 4.7, 95% CI 1.4–15.9

ε4 allele: OR 3.7, 95% CI 1.1–11.7

Kokubo et al., 200075 ApoE Apo ε2/ε3/ε4 84 patients PICH Positive ε2/ε2 allele: OR 4.4, 95% CI 1.0–19.7

1,126 controls ε3/ε4 allele: OR 1.8, 95% CI 1.0–3.3

Catto et al., 200045 ApoE Apo ε2/ε3/ε4 60 patients PICH Negative –

289 controls

Rosand et al., 200038 ApoE Apo ε2/ε3/ε4 41 patients Warfarin-related Positive ε2 allele: OR 3.8, 95% CI 1.0–14.6

66 controls PICH

Chowdhury et al., 200143 ApoE Apo ε2/ε3/ε4 80 patients PICH Positive eε2 allele: in ages >60 years, OR 19.2, 

190 controls 95% CI 1.3–295.2; p<0,05

Woo et al., 20022 ApoE Apo ε2/ε3/ε4 188 patients PICH Positive Lobar PICH, ε2 or ε4 allele: 

366 controls OR 2.3, 95% CI 1.2–4.4

Sudlow et al., 200646 ApoE Apo ε2/ε3/ε4 571 patients PICH (meta-analysis) Positive ε2 allele: OR 1.32, 95% CI 1.01–1.74

2,401 controls

Martinez-Gonzalez et al., 200676 ApoE Apo ε2/ε3/ε4 199 patients PICH outcome Negative ε4+ genotypes: OR 1.38,

(meta-analysis) 95% CI 0.99–1.92

Vernooij et al., 200877 ApoE Apo ε2/ε3/ε4 1,062 persons Cerebral Positive ε4 allele and lobar microbleeds: 

microbleeds OR 1.87, 95% CI 1.25–2.81

Xia et al., 200458 ApoH G341A 140 patients PICH Positive A allele: p<0.05

G817T 100 controls Negative –

G1025C Negative –

C1080T Negative –

Sun et al., 200357 Lp(a) PNTR 499 patients PICH Positive OR 1.62, 95% CI 1.09–2.37; p<0.001

1,817 controls

Yamada et al., 200648 152 genes 202 polymorphisms 282 patients PICH Positive -572G/C polymorphism of IL-6: 

2,010 controls OR 1.57, 95% CI 1.21–2.07; p<0.001

Wang et al.,200647 VKORC1 +2255 T/C 499 patients PICH Positive OR 1.53, 95% CI 1.09–2.16

1,811 controls

Alberts et al., 199750 Endoglin 6 bp insertion 103 patients PICH Positive OR 4.8, 95% CI 1.28–21.6; p=0.012

202 controls

Catto et al., 199652 ACE I/D in intron 16 49 patients PICH Negative –

231 controls

Slowik et al., 200451 ACE I/D in intron 16 58 patients PICH in deep brain Positive OR 2.13, 95% CI 1.10–4.14; p=0.02

116 controls structures

Vila et al., 200078 ACT -15A/T 38 patients PICH Positive OR 1.8, 95% CI 0.85–9.65

70 controls

Obach et al., 200153 ACT -15A/T 99 patients PICH Positive OR 2.80, 95% CI 1.19–6.58

80 controls

Fu et al., 200254 ACT -15A/T 220 patients PICH Positive OR 2.17; p<0.05

276 controls

Pera et al., 200655 ACT -15A/T 95 patients PICH Negative –

190 controls

Dardiotis et al., 200856 ACT -15A/T 147 patients PICH Negative –

206 controls

Navarro-Nunez et al., 200768 b-1-tubulin Q43P 259 patients PICH Positive OR 2.36, 95% CI 1.25–4.45; p=0.008

449 controls

Yoshida et al., 199860 PAF-H Val279Phe 99 patients PICH Positive p<0.05

270 controls

Iniesta et al., 200359 GP Ia 807 C/T, HPA-5 141 patients PICH Negative –

GP IbA VNTR 141 controls Negative –

GP IIIa HPA-1 Negative –

Catto et al., 199861 XIII Val34Leu 62 patients PICH Positive OR=1.7; p=0.05

436 controls 
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ischaemic attacks, lacunar strokes and subcortical dementia.

Magnetic resonance imaging reveals extensive peri-ventricular white

matter leucoencephalopathy and the presence of microbleeds,

predominantly in subcortical areas and the thalamus, detected on 

T2-weighted gradient echo imaging. Microbleeds can be present in

31–69% of patients with CADASIL.30 It was found that PICH can occur

in 25% of symptomatic patients with CADASIL, and this is closely

related to the number of cerebral microbleeds.31

Genetic Association Studies
Apolipoprotein E
Apolipoprotein E (ApoE) is a glycoprotein involved in cholesterol

transport and has three isoforms: ε2, ε3 and ε4. Accumulating evidence

implicates ApoE ε2/ε3/ε4 polymorphism with CAA-related PICH.32–34 The

e4 allele increases Aβ deposition in the cerebral vasculature in a dose-

dependent manner.35,36 The ε2 allele is associated with vasculopathic

changes in amyloid-laden vessels and rupture.33 It has also been

documented that ε2 and ε4 alleles of the ApoE gene are risk factors for

the occurrence of lobar PICH, probably due to the presence of cerebral

amyloid angiopathy in the carriers of these alleles.2 In addition, the e4

allele was associated with earlier age at onset of CAA-related PICH37 and

with warfarin-related PICH.38 ε2 and ε4 allele carriers are also at

increased risk of recurrent haemorrhage compared with ε3 carriers.39

Moreover, the presence of the e4 allele was linked to poor outcome of

PICH patients.40 However, other studies did not find any association

between ApoE polymorphism and PICH.41–45 In a recent meta-analysis,

the ε2 allele was found to be an independent risk factor for PICH (odds

ratio [OR] 1.32, 95% confidence interval [CI] 1.01–1.74), whereas ε4

genotypes were not (OR 1.16, 95% CI 0.93–1.44).46

VKORC1 Gene
An interesting association between a haplotype in the vitamin K

epoxidase reductase complex subunit 1 (VKORC1) gene and arterial

vascular diseases including PICH (OR 1.53, 95% CI 1.09–2.16; p<0.05)

has been reported.47 VKORC1 is implicated in haemostatic processes

through γ-carboxylation of vitamin-K-dependent proteins. Common

polymorphisms of VKORC1 gene have also been found to affect

interindividual differences in warfarin sensitivity.
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Table 1 continued

Reference Gene Polymorphism Methodology Phenotype Results Comments
Corral et al., 200065 XIII Val34Leu 116 patients PICH Negative –

465 controls

Gemmati et al., 200162 XIII Val34Leu 130 patients PICH Positive OR 1.7, 95% CI 1.16–2.51; p=0.009

200 controls

Reiner et al., 200166 XIII Val34Leu 42 patients Women aged <45 Negative –

XIII Tyr204Phe 345 controls years with PICH Positive OR 2.09, 95% CI 1.1–7.5

XIII Pro564Leu Positive OR 4.3, 95% CI 1.4–1.7

PAI -675 4G/5G Negative –

Cho et al., 200279 XIII Val34Leu 58 patients PICH Negative –

48 controls

Endler et al., 200364 XIII Val34Leu 94 patients PICH Negative –

369 controls

Corral et al., 200163 F-V leiden Leiden 201 patients PICH Positive OR 0.19, 95% CI 0.03–0.95

F-II 20210A 201 controls Negative –

F-VII -323 D/I Positive OR 1.54, 95% CI 1.03–2.72

XIII Val34Leu Negative –

Greisenegger et al., 200773 F-VII -401G/T, -402 G/A 85 patients PICH Negative –

85 controls

Obach et al., 200670 Protein Z c.573-79G/A 156 patients PICH Negative –

147 controls

Munoz et al., 200774 GAS6 8 variants 199 patients PICH Negative –

150 controls

Li et al., 200372 MTHFR C677T 503 patients PICH Negative –

1,832 controls

McCarron et al., 200371 IL-1a (-899) C/T 42 patients CAA-related PICH Negative –

167 controls

Strand et al., 200749 OPG -1181G/C, -950T/C 61 patients PICH Positive -1181C/C genotype: OR 6.04,

773 controls 95% CI 1.71–21.29; p=0.005

IL-6 -174G/C Negative –

Strand et al., 200767 ESR1 c.454-397T/C 61 patients PICH Positive c.454-397T/T genotype: OR 3.94, 

773 controls 95% CI 1.54–10.03 

c.454-351A/G Negative –

Xu et al., 200869 PON2 C311S, G148A 150 patients PICH Negative –

120 controls

CAA = cerebral amyloid angiopathy; CI = confidence interval; OR = odds ratio; PICH = primary intracranial haemorrhage; IL = interleukin.

It was found that primary intracerebral

haemorrhage can occur in 25% of

symptomatic patients with CADASIL, and

this is closely related to the number of

cerebral microbleeds.
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Interleukin-6 Gene
In a large-scale association study, 282 Japanese patients with PICH and

2,010 controls were genotyped for 202 polymorphisms of 152 genes

that were implicated in vascular biology, platelet function, leukocyte

biology, coagulation processes, regulation of the circulation, blood

pressure or endocrine function and various metabolic factors, as well

as lipid, glucose and homocystein metabolism. It was found that the 

C allele of the interleukin-6 (IL-6) gene -572G/C polymorphism

increased the risk of PICH (OR 1.57, 95% CI 1.21–2.07; p<0.001). It was

suggested that IL-6 may damage the vascular wall through induction of

matrix metalloproteinases, which degrade the extracellular matrix

around blood vessels and thus weaken the vascular wall.48 However,

recently, in a small group of patients IL-6 -174G/C gene polymorphism

was not found to be an independent risk factor for PICH.49

Engoglin Gene
Endoglin is a glycoprotein in the surface of endothelial cells that interacts

with transforming growth factor-β. Endoglin is important for vascular

development and structural integrity. Variable mutations in the endoglin

gene were found to cause hereditary haemorrhagic telangiectasia. A

homozygous 6bp insertion in the endoglin gene was found in 8.7% of

PICH patients compared with 2% of controls (OR 4.76, 95% CI 1.28–21.6;

p=0.012).50 The same polymorphism was also associated with increased

frequency of intracranial aneurysms.

Angiotensin-converting Enzyme Gene
Angiotensin-converting enzyme (ACE) plays an important role in

regulating both the production of angiotensin II and the degradation

of bradykinin at the endothelial surface. Angiotensin II, which is the

main active product of the renin–angiotensin system, has been linked

to vascular remodelling, inflammation and endothelial dysfunction. It

was reported that the DD genotype of ACE insertion/deletion (I/D)

polymorphism in intron 16 was over-represented in Polish patients

with non-lobar PICH (OR 2.13, 95% CI 1.10–4.14; p=0.02). However,

after excluding the individuals who were receiving ACE inhibitors and

adjusting for other variables, the association was no longer

statistically significant.51 In a previous study, the distribution of ACE

genotypes and alleles was the same among the controls and

patients.52 It was shown that ACE I/D polymorphism only partially

determines the variation in plasma ACE levels, and it is uncertain

whether it represents a functional polymorphism; this may explain the

inconsistency between the two studies. 

Alpha-1 Antichymotrypsin Gene
Alpha-1 antichymotrypsin (ACT) is an acute-phase protein member of

the serine proteinase inhibitors that has been implicated in vascular

pathology. ACT has anti-inflammatory properties as it strongly inhibits

neutrophil cathepsin G, but it is also known to interact with Aβ peptide,

promoting amyloid plaque formation. The TT genotype of ACT A/T signal

peptide polymorphism was associated with PICH in Spanish patients (OR

2.80), especially those with normal blood pressure (OR 3.40).53 By

contrast, a study from China reported a more robust association in

hypertensive patients.54 However, these associations were not replicated

in a study from Poland55 and in a group of 147 Greek patients from our

department.56 In our group we observed only a marginal association in

the non-hypertensive group (p=0.05). It is possible that in non-

hypertensive patients the absence of hypertension unmasks the

relatively minor effects of ACT A/T signal peptide polymorphism on 

the cerebral vasculature, making it more susceptible to haemorrhage.

Lipoprotein a Gene
Elevated lipoprotein a (Lp(a)) levels have been associated with increased

risk of cardiovascular diseases, possibly by being implicated in

atherosclerotic arterial damage. In a large multicentre study in a Chinese

population, low numbers of TTTTA repeats (PNTR polymorphisms) of the

Lp(a) gene were found in patients with PICH.57

Apolipoprotein H Gene
Apolipoprotein H (ApoH) has been implicated in several physiological

pathways including lipid metabolism, coagulation and increased

blood pressure. In a study in a Chinese population it was found that

the Ser88Asn (G341A) polymorphism was associated with increased

risk of PICH.58

Platelet Glycoproteins
Glycoproteins Ia, IbA and IIIa are platelet surface receptors for

fibrinogen, von Willebrand factor and collagen, playing an important role

in platelet adhesion and aggregation. However, genetic polymorphisms

of these factors were not found to increase the risk of PICH.59

PAF-H Gene
Platelet-activating factor acetylhydrolase (PAF-H) is implicated in

thrombosis. A Val2793Phe substitution in the PAF-H gene has been

associated with ischaemic stroke, possibly through increased

thrombotic processes. The same mutation was also found to be a risk

factor for PICH.60

Factor XIII Gene
Blood coagulation factor XIII plays an important role in clot

stabilisation by cross-linking fibrin chains. A point mutation in codon

34 (Val34Leu) of XIII gene was known to be protective against

thrombotic diseases including myocardial infarction and ischaemic

stroke. However, a potential association of Val34Leu and PICH was

reported.61 The authors suggested that the Leu34 allele might cause

the formation of weaker fibrin structures that predispose to PICH.

Subsequently, this polymorphism was extensively investigated in

various populations but with contradictory results.62–66
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Implementation of genome-wide scans

may provide substantial benefits,

including the development of genetic

markers for determination of specific

molecular profiles in individuals and

assessment of disease risk.

Primary intracerebral haemorrhage 

is a complex multifactorial disorder 

that probably results from an interaction

between various environmental 

factors and the genetic background 

of the patient.
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Other Association Studies
Other genetic variants that have been associated with PICH are poly-

morphisms in the oestrogen receptor alpha gene,67 the osteoprotegerin

gene,49 factor V-leiden,63 factor VII63 and b1-tubulin.68 Genetic variants not

associated with PICH are polymorphisms in the paraoxonase 2 gene,69

the protein Z gene,70 the interleukin-1a gene,71 the methylenetetrahydro-

folate reductase (MTHFR) gene,72 prothrombin,63 factor VII,73 the growth-

arrest-specific gene74 and plasminogen activator inhibitor-1 (PAI-1).66

Conclusions
PICH is a complex multifactorial disorder that probably results from an

interaction between various environmental factors and the genetic

background of the patient. Linkage analyses in familial cases of PICH

have identified chromosomal loci linked to PICH. In addition, several

association studies of sporadic cases have revealed a number of genetic

variants that possibly confer susceptibility to PICH. Whole-genome

association studies are now feasible via current technology.

Implementation of genome-wide scans may provide substantial

benefits, including the development of genetic markers for

determination of specific molecular profiles in individuals and

assessment of disease risk. In the future, this may offer the prospect of

early diagnosis, personalised risk assessment and novel genomic-based

preventative therapies.3 n
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