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Positron emission tomography (PET) utilises biologically active molecules in

micromolar or nanomolar concentrations that have been labelled with short-

lived positron-emitting isotopes. The physical characteristics of the isotopes

and the molecular specificity of labelled molecules, combined with the high

detection efficacy of modern PET scanners, provide sensitivity for in vivo

measurement that is several orders of magnitude higher than with the other

imaging techniques. While the very short half-lives of 15O (two minutes) and
11C (20 minutes) limit their use to fully equipped PET centres with a cyclotron

and radiopharmaceutical laboratory, 18F-labelled tracers (half-life 110

minutes) can be produced in specialised cyclotron centres for regional

distribution to hospitals running a PET scanner only.

Glucose is the main energy supply for the brain. Its metabolism maintains

ion gradients and glutamate turnover and is closely coupled to neuronal

function at rest and during functional activation.1 Its measurement by 18F-2-

fluoro-2-deoxy-D-glucose (FDG) is based on phosphorylation of the tracer by

hexokinase, which is the pivotal first step of that metabolic pathway.

Typically, PET images are obtained 30–60 minutes after tracer injection,

when FDG uptake is approximately proportional to glucose metabolism, and

actual measurement times can be as short as five to 10 minutes. Under

resting conditions (awake, but without external stimulation), normal grey

matter displays two to four times higher glucose metabolism than white

matter. There is a moderate reduction of cerebral glucose metabolism with

age, mainly affecting the frontal association cortex.2 Significant regional

reductions of glucose metabolism indicate impairment of synaptic function,

and the technique is therefore applicable to all types of dementia. 

There is growing interest in imaging amyloid deposits, the pathological

hallmarks of Alzheimer’s disease (AD). There are now several PET tracers 

for in vivo amyloid imaging that allow longitudinal studies of amyloid

deposition to clarify whether amyloid deposition is a cause or consequence

in the pathophysiology of AD.3,4 Furthermore, the degeneration of 

major neurotransmitter systems can be demonstrated in vivo by using

appropriate PET tracers. Impairment of the cholinergic and dopaminergic

neurotransmission is of particular diagnostic interest. By these means, PET

can detect early stages and differentiate between various types of dementia,

and also monitor progression and the effect of therapeutic intervention. 

Alzheimer’s Disease

Over more than 20 years, multiple studies have demonstrated that glucose

metabolism and blood flow are impaired in temporal–parietal association

cortices, with the angular gyrus usually being located at the centre of the

metabolic impairment.5 The frontal association cortex may also be involved,

but variably and usually to a lesser degree. The affected association cortices

are those that become myelinated last during brain maturation and are also

prone to cortical amyloid deposition.6 There may be a distinct hemispheric

asymmetry, which usually corresponds to the predominant cognitive deficits

(language impairment in the dominant and visuospatial disorientation in the

sub-dominant hemisphere). In contrast to other dementia types, in AD

glucose metabolism in the basal ganglia, primary motor and visual cortex

and cerebellum is usually well preserved. This pattern generally reflects AD

clinical symptoms, with impairment of memory and associative thinking,

including higher-order sensory processing and planning of action, but

relative preservation of primary motor and sensory function.

Voxel-based comparisons with normal reference samples clearly show that

the posterior cingulate gyrus and the precuneus are also impaired at an early

stage of AD.7 This is usually not directly obvious by mere inspection of FDG

PET scans because metabolism in that area is above the cortical average in

normal brain at a resting state,8 and with the beginning of impairment it

returns to the level of the surrounding cortex but does not stand out as a

hypometabolic lesion. Thus, this important diagnostic sign is easily missed by

standard visual interpretation of FDG PET brain scans. On the background of

sufficient numbers of FDG PET scans in normal controls it is becoming

increasingly standard to base the interpretation of patient studies not merely

on visual interpretation of the tracer distribution, but also on quantitative

mapping with reference to an appropriate normal sample.9–15

The pattern of metabolic impairment can vary considerably among individual

patients. It is typically more pronounced in patients with onset of the disease

before 75 years of age than in patients who develop AD at later ages.16,17 The

degree of metabolic impairment in frontal association cortices varies and is

typically seen in more severely affected patients and in patients who are

carriers of the apolipoprotein E4 allele.18 There are AD patients with very

pronounced focal impairment of occipito-temporo-parietal association areas,

which may correspond to the clinical syndrome of posterior cortical atrophy.19

Normal ageing and AD cause significant atrophy, including in those brain

areas that are also hypometabolic on FDG PET.20 Regional atrophy will cause

underestimation of regional glucose metabolism on PET scans due to partial

volume effects, depending on scanner resolution. The magnitude of this

effect has been estimated in several studies. They concluded that the

metabolic reduction in posterior neocortical association areas cannot be

explained completely by atrophy-related partial volume effects,21 while there
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is typically more severe hippocampal atrophy on MRI than apparent

hypometabolism on PET scans.22

Longitudinal studies have demonstrated that the severity and extent of

metabolic impairment in temporal and parietal cortex increases with

dementia progression, and frontal reductions become more

evident.23,24 The reduction of metabolism is in the order of 16–19%

over three years in association cortices, which contrasts with an

absence of significant decline in normal control subjects.25

Asymmetrical metabolic impairment and associated predominance of

language or visuospatial impairment tends to persist during

progression.26,27 Based on these observations, FDG PET can serve as a

biomarker in therapeutic trials.28,29 When monitoring change due to

disease progression over one year using standard neuropsychological

testing by mini-mental state examination (MMSE) and Alzheimer’s

Disease Assessment Scale Cognitive Subscale (ADAS-cog), one typically

obtains coefficients of variance (COV) around 100% for these

changes, whereas PET measurements are subject to about 50% COV,

thus doubling t-scores and reducing the required sample size by about

75% at the same study power.30,31

Mild Cognitive Impairment

Mild cognitive impairment (MCI) can progress to AD, but MCI patients

may also remain stable over many years, develop mixed or vascular

dementia or even remit. There is considerable interest in whether PET

would allow a reliable diagnosis of AD at this early stage before clinical

manifestation of dementia. Impairment of regional cerebral metabolic

rate of glucose consumption (rCMRglc) has been observed in

individuals at high risk of AD due to family history of AD and

possession of the apolipoprotein E (ApoE) ε4 allele,32,33 even at a

completely asymptomatic stage, and this abnormality is seen decades

before the likely onset of dementia.34 In middle-aged and elderly

asymptomatic ApoE ε4-positive individuals, temporo-parietal and

posterior cingulate rCMRglc declines by about 2% per year.35

The first study noting the predictive power of posterior cingulate metabolism

in patients with severe memory deficits for predicting progression was

performed by Minoshima et al. in 1997.7 This observation was followed by

several studies indicating a high predictive power with sensitivity and

specificity above 80% for prediction of rapid progression,36–41 which is

clearly superior to ApoE ε4 testing. Mesial temporal metabolic impairment

has been observed as a general feature in patients with memory

impairment,42–44 and hippocampal metabolic impairment appears to predict

development of MCI in cognitively normal subjects.45

Amyloid

The first tracer used to label Aβ-amyloid selectively in vivo was 11C-labelled

thioflavin analogue, named for convenience Pittsburgh compound B (11C-

PIB).46 Dynamic scanning provides quantitation of binding potential, while a

relatively simple and practical method of quantitating uptake in a clinical

setting is based on scans obtained approximately 60 minutes after

intravenous injection of the tracer, with the cerebellum as an unaffected

reference region.47 Since its introduction, this tracer has been used by

multiple research groups and has been consistently proved to provide high

sensitivity in detecting amyloid plaques and vascular amyloid in the human

brain in vivo.48–50 In normal subjects, some unspecific binding is observed,

mainly in white matter – which probably is due to the compound’s

lipophilicity – whereas in patients with AD, specific binding mostly in the

frontal, temporal and parietal association cortices typically exceeds twice the

background level. Follow-up studies with 11C-PIB in AD indicate that there

is no further increase of tracer uptake during progression of the disease.51

When used in tracer amounts, 11C-PIB is specific for amyloid and does not

bind to neurofibrillary tangles.52 Its clinical specificity for AD is currently being

studied and it has been shown that patients with frontotemporal dementia

or semantic dementia do not show increased 11C-PIB binding.53,54 Findings

in patients with MCI are heterogeneous: some show intensely increased

binding, like AD patients, while others are within normal limits. First results

from follow-up studies of up to 18 months indicate that some patients with

increased binding may indeed progress to AD.55 As to be expected from

previous post mortem findings, increased amyloid binding has also been

observed in some cognitively normal elderly volunteers.56 It remains to be

determined whether increased 11C-PIB uptake in elderly individuals who are

cognitively normal represent false-positive findings or a pre-symptomatic

stage of AD that could become clinically manifest up to a decade later.

An alternative 11C-labelled tracer is the stilbene derivative SB-13,57 which

appears to have similar properties to 11C-PIB without obvious advantages.
18F-labelled tracers could have the practical advantage of becoming more

widely available from commercial providers, even for PET centres without

their own cyclotron. Recently, a series of stilbene derivatives have been

labelled with 18F and evaluated as amyloid ligands, demonstrating

satisfactory specific amyloid binding to non-specific binding in AD for

compound AV-45.58 A related compound, 18F-BAY94-9172 (formerly

known as AV-1), demonstrated 100% sensitivity and 90% specificity for AD

in 15 patients with mild AD, 15 healthy elderly controls and five individuals

with frontotemporal lobar degeneration.59

Another tracer, the anthracyclin derivative 18F-FDDNP, has different

characteristics and binds to neurofibrillary tangles as well as amyloid

plaques with less affinity and specificity than PIB.60,61 Binding to amyloid

competes with some non-steroidal antiphlogistics.62 While providing a

generally somewhat less favourable signal-to-background ratio, it also

detects neurofibrillary tangles, which appear in the hippocampus in the

earliest stages of AD63 and differentiates persons with mild cognitive

impairment from those with Alzheimer’s disease and those with no

cognitive impairment.64

Cholinergic System

Impairment of cholinergic neurotransmission is characteristic of AD, and

may be even more severe in dementia with Lewy bodies (DLB).65 Tracers for

imaging nicotinic receptors, which are of particular interest because of their

largely pre-synaptic location, are 11C-nicotine66 and 18F-A-85380.67 Reduced

binding has been observed in the cortex with 11C-nicotine,66,68 and mostly in

the thalamus with 18F-A-8538069 in AD.

The most important degrading enzyme for acetylcholine in the human

cortex is acetylcholine esterase (AChE), which is present in cholinergic axons

and relatively few cholinoceptive neurons. As the cholinergic axons

degenerate, AChE activity is also reduced.70 Labelled analogues of

acetylcholine that are also substrates for AChE can be used to measure and

image its activity in vivo. These are 11C-N-methyl-4-piperidyl-acetate

(MP4A, also known as AMP),71 which is 94% specific for AChE in human

brain, and 11C-N-methyl-4-piperidyl-propionate (MP4P, or PMP).72 There

have been several studies measuring AChE activity, all of which found a

reduction of cortical activity in AD73–76 and even in MCI,77 most severely
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affecting the temporal cortex. This technique has also been used to

measure drug-induced AChE inhibition in AD patients, which for all

currently available cholinesterase inhibitors at standard clinical dose is in the

range of 30–40%.78–80

Fronto-temporal Lobar Degeneration

This group of diseases comprises fronto-temporal dementia (FTD) as the

most frequent manifestation with mostly behavioural symptoms and also

more focal degenerative processes such as progressive aphasia,

progressive apraxia and semantic dementia with various histopathological

features (including Pick bodies in some cases) but absence of amyloid

plaques.81 In FTD, cerebral glucose metabolism is impaired mostly in the

frontal cortex, especially in the mesial frontal cortex.82 Frontolateral and

anterior temporal cortices are often also severely impaired, and this

impairment is related to the clinical symptoms of aphasia or semantic

memory deficits and may be very asymmetric.83,84 Milder metabolic

impairment often involves posterior association cortices as well.85 The

regional pattern of predominantly frontal impairment usually allows clear

distinction from AD, although there may be overlap as AD can involve

frontal regions as well and FTD may not spare the temporo-parietal cortex.

It has recently been shown in a series of 45 patients with pathologically

confirmed diagnosis that FDG PET can discriminate FTD from AD with

more than 85% sensitivity and specificity.86

Semantic dementia, which is clinically characterised by a failure of semantic

memory, typically shows severe metabolic impairment of the anterior parts

of the left temporal lobe,87,88 often also extending into basolateral parts of

the frontal lobe.89 The main metabolic deficits in progressive aphasia are

typically located in the language areas of the left hemisphere.90 There is

considerable overlap of metabolic deficits with FTD, especially as these

diseases progress.

Dementia with Lewy Bodies

DLB is clinically characterised by fluctuating consciousness, possible

parkinsonian motor features and impairment of visual perception,

including hallucinations. The latter are the likely correlate of the

reduction of glucose metabolism in the primary visual cortex that has

been described with FDG PET in DLB, in addition to an impairment of

posterior association areas, like in AD.91 In contrast, metabolic activity

in the primary visual cortex is usually well preserved in AD, but in

practice the distinction may be difficult as metabolic activity in that

area is subject to considerable variability and depends on examination

conditions (eyes open or eyes closed). A recent analysis of diagnostic

discrimination reported a relatively low accuracy of 73% for

discrimination between DLB and AD.92

A more reliable feature to differentiate DLB from AD is the impairment of

dopamine synthesis and transport,93 which can be assessed with 18F-

fluorodopa94 and tracers for dopamine transporters.95 A deficit of dopamine

synthesis similar to PD has been found in DLB, even at a stage when

parkinsonism may not yet be prominent,93,96 while it is normal in patients

with AD. In contrast to the cholinergic impairment, which is severe in DLB

but only mild in PD without dementia, the dopaminergic deficit does not

appear to be related to dementia.97

Summary

Brain PET using FDG is a firmly established technique for demonstration

of regional functional impairment in neurodegenerative disease. AD is

associated with typical regional impairments of posterior cortical

association areas, including the posterior cingulate gyrus, which are

closely related to clinical symptoms. Thus, FDG PET facilitates very early

diagnosis before clinical manifestation of dementia and can provide

monitoring of progression and treatment effects. DLB shows metabolic

impairment similar to AD but involves additional metabolic impairment of

primary visual cortex. Predominant impairment of frontal and anterior

temporal regions is seen in FTD: primary progressive aphasia and

semantic dementia. New perspectives for specific molecular imaging have

been opened by tracers for imaging amyloid that appear to be very

sensitive even in the detection of pre-clinical AD cases. As amyloid

deposition is also found in a proportion of cognitively normal elderly

people, confirmation of its pathological significance remains to be

demonstrated by long-term follow-up studies. Tracers for imaging

nicotinic receptors and for measuring local acetylcholine esterase activity

demonstrate cholinergic impairment in MCI, AD and DLB. The

impairment of dopamine neurotransmission that is characteristic of DLB

can be demonstrated by 18F-fluorodopa PET. ■
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