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Abstract
The pathophysiology of idiopathic Parkinson’s disease (PD) is traditionally characterised as substantia nigra degeneration, but careful 

examination of the widespread neuropathological changes suggests individual differences in neuronal vulnerability. A major limitation to 

studies of disease progression in PD has been that conventional magnetic resonance imaging (MRI) techniques provide relatively poor 

contrast for the structures that are affected by the disease, and thus are not typically used in experimental or clinical studies. Here, we 

review the current state of structural MRI as applied to the analysis of the PD brain. We also describe a new multispectral MRI method that 

provides improved contrast for the substantia nigra and basal forebrain, which we recently used to show that these structures display 

different trajectories of volume loss early in the disease.
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Parkinson’s disease (PD) is a devastating neurodegenerative disorder 

characterised by its cardinal motor symptoms: resting tremor, muscular 

rigidity, bradykinesia, postural instability and gait abnormality.1 PD 

currently affects 1–2 % of individuals over age 65, totalling five million 

people worldwide. Over the next 20 years, the incidence of PD is 

projected to double, making research on its causes and treatments 

timelier and more relevant to global public health than ever before. A 

major impediment to such research is a paucity of safe, fast and effective 

brain imaging methods for visualising the structures affected by PD. 

Because conventional structural magnetic resonance imaging (MRI) 

techniques cannot visualise the brain changes that are at the core of 

this disease, MRI-based biomarkers for diagnosis and tracking disease 

progression do not currently exist. 

The cardinal motor features of PD are typically attributed to a loss 

of nigrostriatal dopaminergical neurons in the substantia nigra 

pars compacta (SNpc), which is accompanied by the aggregation 

of Lewy bodies and neurites in this structure.2–4 While denervation 

of dopaminergical nigrostriatal projections may explain the primary 

motor symptoms of PD, as shown by the dramatic motor improvement 

associated with dopamine replacement therapy,5,6 abnormalities 

beyond the SNpc7–10 likely underlie the serious and potentially 

debilitating non-motor features, including cognitive and memory 

impairments and progression to dementia.11,12 Notably, degeneration 

of the cholinergic basal forebrain (BF)13–15 and noradrenergic locus 

coeruleus16,17 in PD probably contribute to non-motor deficits. Although 

deterioration in the BF and LC is most often associated with late-stage 

PD with dementia,18 subtle changes in earlier stages could result in 

poor performance on tests of memory and attention.19 Research on 

these non-motor aspects of the disease has been hindered by a lack 

of sensitive MRI biomarkers for the affected structures. This article 

reviews recent progress in developing new MRI-based biomarkers 

to visualise and characterise abnormalities in some of the brain 

structures affected by PD.

Imaging the Substantia Nigra
The substantia nigra comprises two structurally and functionally 

segregated regions: the SNpc, which projects mainly to the striatum and 

basal ganglia, and the substantia nigra pars reticulata (SNr), which sends 

its primary efferent projections to the thalamus and superior colliculus. In 

PD, neuronal loss in the SNpc is prevalent in the caudal and mediolateral 

part and more limited in mediorostral areas.20 This loss of SNpc neurons 

results in a marked depletion of dopamine in the striatum, and to a 

lesser extent in other basal ganglia nuclei. The pattern of dopamine loss 

in the striatum parallels the lateral to medial gradient of cell loss in the 

SNpc, with cells projecting to the putamen showing signs of atrophy 

first, followed by those that project to the caudate nucleus and nucleus 

accumbens.21 Functionally segregated circuits link the basal ganglia 

and cortex in a topographical manner,4–6 with dense reciprocal fronto-

striatal connections, which are known to support high-order cognitive 

functions.22,23 Because abnormalities in any part of the complex basal 

ganglia-thalamocortical circuitry could have significant downstream 

consequences,24 PD may be considered a network disease. Significant 

progress has been made using MRI to accurately segment the structures 

of the basal ganglia,25,26 but few tools exist for measuring the size and 

structure of the SNpc. 
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One hindrance to the development of effective morphometric tools 

is that the borders of the SNpc are nearly impossible to visualise on 

conventional T1-weighted MRI.27 As a result, numerous attempts have 

been made to develop new sequences that would provide indices of 

nigral degeneration in PD.28 Results from these studies, however, are 

wrought with contradictions. Early attempts at visualising the SNpc 

capitalised on the relative distribution of iron in the midbrain, which 

causes magnetic susceptibility artefacts and signal loss in T2-weighted 

images.29 The SNr has relatively high levels of iron, and thus appears as 

a hypointense region, whereas the dopamineric SNpc, which contains 

neuromelanin, appears as a hyperintense region between the SNr and 

red nucleus on axial images.30 

Although most studies reported signal loss or reduced size of the SNpc 

in PD patients compared with controls,31–35 some failed to find disease-

related changes,36,37 and others pointed out potential confounds in 

prior studies.38 Limitations in visualising the SNpc in T2-weighted 

images were that the anatomical location of the SNpc appeared to be 

inconsistent with histological reports, and researchers were not able 

to reliably differentiate SNpc from SNr.30 A subsequent study used 

proton density-weighted MRI in combination with short inversion-time 

recovery images to more accurately distinguish the SNpc and SNr, but 

did not find a significant decrease in SNpc size in PD patients.39 

Newer methods, such as the use of MR sequences sensitive to 

neuromelanin,40 evaluation of T2 relaxation times41 and segmented 

inversion recovery ratio imaging42–44 have achieved greater success in 

differentiating SNr and SNpc and have documented changes in the SNpc 

in PD. Further, T2* and diffusion-weighted imaging methods have been 

found to be sensitive to disease-related changes in the SNpc, likely as 

a result of differences in MR inhomogeneities related to the relatively 

high iron content of this structure.45,46 An emerging method, connectivity-

based segmentation of the SN using diffusion tensor imaging, may prove 

useful for delineating SNpc and SNr, but an initial report failed to find 

a significant different in SNpc size between PD patients and controls, 

possibly due to a limited sample size.47 

We recently described a new multispectral MRI method for visualising 

the SNpc.48 Our multispectral sequences included multi-echo 

MPRAGE with T1-weighting, multi-echo Fast Low-Angle Shot (FLASH) 

with proton density weighting, 3D T2-SPACE turbo spin echo and 

3D T2-SPACE fluid-attenuated inversion recovery (FLAIR) turbo spin 

echo. For anatomical analyses of cortical structures, we showed 

that high-bandwidth T1-weighted multi-echo MPRAGE data were 

superior to conventional T1-weighted images.26,49 Further, multi-echo 

sequences were less prone to distortion and had a higher contrast-

to-noise ratio for subcortical structures. These sequences were 

bandwidth-matched at 698 Hz/pixel – a property that was critical for 

facilitating coregistration across scans without distortion corrections. 

Because we could perform precise spatial registration of scans that  

had different contrasts, we could generate multiple weighted averages of  

the sequences, each with a unique contrast tailored to a specific set  

of structures. Thus, multispectral data yield a broad range of contrasts 

that allow for enhanced anatomical analysis and provide valuable new 

data about the subcortical structures implicated in PD. 

We generated weighted averages of scans with different contrasts, 

emphasising the contribution of proton density- and T2-weighted 

images, with a lesser, but important, contribution from T1-weighted 

and T2-FLAIR images. This method allowed reliable delineation the 

SNpc in a relatively large sample of PD patients and controls. The fact 

that the anatomical location of the SNpc in our images corresponded 

well, to those described in the most accurate MRI studies performed 

to date,39,40,43,50 increased our confidence in the utility of this method 

for distinguishing SNpc from SNr. As a result, we were able to detect a 

significant decrease in the volume of the SNpc in the earliest stage of 

the disease (see Figure 1).

Imaging the Basal Forebrain 
The BF is a collection of cholinergic nuclei that contains the diagonal 

band of Broca, medial septum and nucleus basalis of Meynert.51 These 

nuclei constitute the primary source of cholinergic innervation of the 

entire cerebral cortex52–54 and are essential for a host of cognitive 

processes, including attention and long-term memory.55–58 Degeneration 

of the BF is often considered a hallmark of Alzheimer’s disease (AD) 

pathology,57,59–61 but some studies suggest that cell loss and cholinergic 

dysfunction in PD is similar or even greater.61,62 

Direct confirmation of cholinergic degeneration in PD comes from 

neuropathological studies that uncovered a pronounced loss of 

cholinergic neurons in the BF of patients with PD.15,51,61,63,64 In addition, 

another post mortem investigation documented decreases in the 

biochemical markers of cholinergic function, including choline 

acetyltransferase (ChAT) and acetylcholinesterase (AChE).65 Researchers 

found decreased ChAT activity in non-demented PD patients and an 

even greater drop in those with dementia. Several reports linked non-

motor cognitive impairments to cholinergic dysfunction.66,67

PET experiments provided complementary in vivo confirmation of a 

loss of cholinergic function in PD, in particular a marked reduction 

of AChE activity in cortical regions.68–70 Based on known patterns 

of cholinergic projections,52–54 it appears likely that this decrease in 

cortical AChE activity is caused by a loss of cholinergic neurons in 

the BF. Although AChE dysfunction appears relatively early in PD,68,71  

the magnitude of the disruption is greater and more widespread in PD 

patients with dementia than in those without.69,70 Other PET studies 

confirmed the presence of altered cholinergic neurotransmission 

in patients with mild PD.68,69,72 What was lacking until recently was a 

thorough MRI-based in vivo examination of the morphology of the BF 

early in the disease.73,74

Left: an axial section through an averaged multispectral image at the level of the 
midbrain showing the substantia nigra (SN) in a healthy control participant. Right: 
magnified view of the SN in a healthy woman (top) and a woman with Parkinson’s 
disease (PD) (bottom); signal loss in the SN is striking in the PD brain (green arrow).

Figure 1: Multispectral Visualisation of 
Substantia Nigra
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MRI studies of the BF have generally relied on T2-weighted images. In 

contrast to studies of the SNpc, relatively few studies have attempted 

to use MRI to measure disease-related changes in the BF of PD patients. 

Studies of patients with AD and other forms of dementia have resolved 

the BF (i.e., the substantia innominata) on T2-weighted images.75–78 Using 

similar methods, one study demonstrated reduced thickness of this 

structure in demented PD patients in the later stages of the disease.76 

The volume of the BF has also been measured using T1-weighted 

images collected at 3T, in which the borders of the BF are more visible 

than in lower field strength images.79 This method revealed a significant 

decrease in the volume of the BF between non-demented PD patients 

and controls, with further volume loss in demented patients.80 Few 

studies, however, have described the morphology of this structure in 

early-stage, non-demented PD patients.

In addition to using our new multispectral MRI methods to measure the 

SNpc,48 we found that our T2-FLAIR images provided superior contrast 

for the BF than that achieved in previous MRI studies using standard  

T2-weighted images. We were, therefore, able to examine the morphology 

of this structure in this same set of PD patients and controls. In contrast 

to our finding of decreased SNpc volume in the earliest stages of the 

disease, BF volume loss occurred later in the disease, with a significant 

decrease apparent only in patients in Hoehn and Yahr Stages 2 and 3, 

but not in Stage 1 patients. This finding of greater BF volume loss at later 

stages of the disease is consistent with the results from previous PET 

studies, as well as with reports of a more dramatic degree of BF cell loss 

in PD patients with dementia, compared to non-demented patients.51

Comparison of Substantia Nigra Pars  
Compacta and Basal Forebrain  
Changes in Parkinson’s Disease
According to the influential Braak neuropathological staging 

scheme, progression of neurodegenerative processes in PD (e.g., 

Lewy body deposition) begins in the enteric and peripheral nervous 

system, and then progresses anteriorly to the brainstem, midbrain, 

forebrain and neocortex.81,82 While this account is based on a careful 

neuropathological examination of a large sample of post mortem 

specimens, definitive confirmation of the hypothesis is lacking.83,84 

Validation requires in vivo indices of the timing and progression of 

neuronal degeneration in these areas. A specific hypothesis that 

arises from this staging scheme is that pathological changes in the 

SNpc should precede degeneration of the more anterior BF.1,82,85 

Until recently, this hypothesis had not been tested, because the 

morphology of the SNpc and BF had been examined only in separate 

study groups using data collected at different times.

We applied our newly developed multispectral MRI techniques to 

test the hypothesis that degeneration of the SNpc precedes the BF. 

New multispectral structural MRI sequences allowed us to visualise 

and measure disease-related changes in both structures in a single 

sample of PD patients and controls. Consistent with this hypothesis, 

our analysis of MRI-derived volumetric data revealed a decrease in 

the volume of the SNpc in patients who were in early stages of the 

disease, but lower BF volumes only in patients with more advanced 

PD.48 This study provided the first direct in vivo support for the Braak 

neuropathological staging scheme in PD.81,82 Our MRI data provide a 

complement to existing neuropathological studies, which are based 

entirely on measures of α-synuclein inclusions and not on cell or volume 

loss, with uncertainty regarding the existence of a correspondence 

between α-synuclein pathology and loss of volume.86 

Early pathological insults to non-dopaminergic nuclei underlie deficits in 

attention and cognitive control in the early stages of PD. The identification 

of clusters of patients with distinct patterns of cognitive impairment 

raises the possibility that a subgroup of idiopathic PD patients may be 

at greater risk of developing memory impairments and dementia, which 

may stem from exacerbated BF degeneration, and more extensive 

disruption of cholinergic innervation of the neocortex.87–89 Evidence of 

such heterogeneity stems from the observation that some advanced 

non-demented PD patients actually showed higher levels of AchE 

activity than a sample of drug-naïve patients in the earliest stages of the 

disease.69 Pharmaceutical augmentation of cholinergic activity led to a 

significantly reduced frequency of falling in some PD patients.90 Further, 

PD patients with postural and gait disturbances were at greater risk of 

developing dementia.91 

Parallels Between Parkinson’s Disease and 
Alzheimer’s Disease in Patterns of Basal 
Forebrain Degeneration 
The fact that cholinergic degeneration in PD worsens with disease 

progression and is exacerbated in PD patients with dementia51,69,70,92 

suggests parallels between PD and AD. While disruption of cholinergic 

function appears to be linked to the development of cognitive 

impairments and dementia, explicit verification of a shared pathogenic 

mechanism between PD and AD remains equivocal. In PD, neuronal 

loss or Lewy body deposition in the BF can occur in the absence of 

the hallmark neuropathological features of AD – amyloid plaques and 

neurofibrillary tangles.63,64,93–95 Other studies in PD patients have failed 

to find a significant correlation between level of cognitive impairment 

and degree of cell loss96 or Lewy body burden97 in the BF, leading to the 

hypothesis that the degree of cholinergic degeneration must reach a 

critical threshold before the symptoms of dementia emerge.98 

Thus, while some have proposed a common mechanism underlying 

BF degeneration in AD and PD with dementia, direct support for this 

hypothesis is lacking. An alternative proposal is that BF degeneration 

is primary in PD, whereas the cholinergic cell loss in AD is secondary 

to cortical pathology, which leads to depleted retrograde transport of 

critical growth factors to BF neurons.98 

 

Whether a bona fide pathological parallel exists between PD and AD,  

the disruption of cholinergic function in PD has real and important 

clinical implications that are not limited to dementia. Cholinergic 

dysfunction has been linked to a number of non-motor symptoms, 

including decreased performance on tests of working memory,70 

set-shifting99,100 and free recall.100 In addition, administration of 

anticholinergic drugs led to the development of executive100 and 

memory101 impairments in PD patients who did not previously show 

these deficits. Some of these symptoms were partially ameliorated 

by treatment with central cholinesterase inhibitors,102–104 and indeed, 

cholinesterase inhibitors have become a staple in the treatment of PD 

with dementia.105,106

Conclusions
Recent advances in structural MRI technology have laid the groundwork 

to the development of new biomarkers to visualise and characterise 

abnormalities that are at the core of PD. As these methods become 

refined and are applied to large samples of PD patients, they will enable 

scientists and physicians to derive and track disease progression in 

subgroups of patients, thereby paving the way for specialised clinical 

treatments based on a detailed profile of brain changes. n
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