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Abstract

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterised by progressive memory deficits and other cognitive
disturbances. Neuropathologically, AD is characterised by synaptic deficits, progressive loss of neocortical, limbic and basal forebrain
cholinergic neurons and the abnormal extracellular accumulation of amyloid-beta (AB) and the intracellular aggregation of the
cytoskeletal protein tau. Currently available AD therapies either only temporarily delay disease progression or address the symptoms but
are unable to alter the underlying mechanisms of disease. Therefore, ongoing AD research is focused at better understanding
pathogenesis and at developing disease-modifying experimental therapeutic approaches. This review will summarise the main areas of
preclinical research for AD therapeutics that includes those aimed at modulating the processing of amyloid precursor protein (APP) and
the production of Ap; ameliorating the pathological accumulation of Ap or tau; augmenting neuroprotective activities in the AD brain;
and augmenting neurorestoration in the AD brain. The review will also discuss a novel multimodal therapeutic approach to AD using

Cerebrolysin, a peptidergic mixture with neurotrophic-like effects.
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Alzheimer’s disease (AD) is the seventh most prevalent cause of
death in the US and is the leading cause of dementia, affecting more
than 5 million Americans and 26 million people worldwide. Without an
effective therapy it is estimated that the number of patients with AD
will double by the year 2050." Cognitive impairment in patients with
AD is closely associated with loss of synapses and the formation of
neurofibrillary tangles (NFT) in the neocortex and limbic system.*¢ The
two major neuropathological findings in patients with AD are
extracellular plaques formed mainly of the amyloid-beta (AB)
peptide,”” and intracellular NFT, containing hyperphosphorylated
tau.”" Several lines of investigation support the view that increasing
levels of AB1_sp, the proteolytic product of amyloid precursor protein
(APP) metabolism, might be centrally involved in the pathogenesis of
AD”* and it has been proposed that in AD, progressive accumulation
of AB might be involved in the mechanisms underlying NFT formation
and synaptic loss.™"” More specifically in recent years the potential
role of neurotoxic Ap oligomers has emerged as a topic of
considerable interest.”?

AD medications currently prescribed are aimed at individuals with mild
to moderate AD and include drugs such as donepezil, rivastigmine and
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galantamine, all of which are acetylcholinesterase inhibitors and work
by preventing the breakdown of acetylcholine and stimulating nicotinic
receptors to release acetylcholine in the brain. Memantine, another
drug currently approved for use in moderate to severe AD, is an
N-methyl-D-aspartate (NMDA) receptor antagonist and acts on the
glutamatergic system by blocking the toxic effects associated with
excess glutamate, thereby regulating glutamate activation. In addition
to its activity at the NMDA receptor, memantine also acts as a
non-competitive antagonist at the 5-hydroxytryptamine (5-HT)
serotonin and nicotinic receptors. Although each of these drugs has
demonstrated treatment effects on the cognitive, functional and
behavioural problems commonly associated with AD, these drugs
simply slow the progression of AD but do nothing to tackle the
underlying pathogenesis. In this context, there has been real interest
in elucidating the main pathways involved in AD pathogenesis and
developing therapies acting on these key pathways.

This review will focus on preclinical experimental therapies being
investigated for AD, with particular focus on the role of multimodal
therapies, typified by Cerebrolysin (CBL), a peptide mixture with
neurotrophic-like effects.
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Areas of Preclinical Therapeutical Research

The last few decades have seen an exponential increase in our
understanding of mechanisms underlying AD pathogenesis, and this
has led to increased diversity in the modes of action of experimental
AD therapies (see Figure 1).

Many of the current experimental approaches towards AD therapy fall
into the following broad categories:

e those aimed at modulating the processing of APP and the
production of AB;

o those aimed at ameliorating the pathological accumulation of Ap
or tau;

e those aimed at augmenting neuroprotective activities in the AD
brain; and

e those aimed at augmenting neurorestoration in the AD brain.

Each of these major approaches will be addressed below; additionally
we shall highlight CBL, a unique neurotrophic therapeutical approach
for AD that has a multimodal mechanism of action. However, it should
be noted that some key approaches to AD therapy, such as
modulation of the inflammatory response, are topics in their own right
and are too broad for the scope of this review; for a discussion on this
topic the reader is referred to a number of recent review articles.?#

Therapies Aimed at Modulating Amyloid
Precursor Protein Processing

Ap is formed by the proteolytic cleavage of the APP, a single-pass
transmembrane protein with a large extracellular domain. APP
processing occurs as a result of the sequential action of a group of
enzymes called secretases. Secretase processing can occur via two
separate pathways, the first of these is the non-amyloidogenic
pathway, in which the sequential action of a- and then y-secretase
results in the formation a C-terminal fragment, a soluble-APPa and
eventually the APP intracellular domain (AICD).** The second
pathway is the amyloidogenic pathway and involves the initial
cleavage of APP by p-secretase followed by the action of y-secretase
which now generates multiple forms of A with ABq_49 and ABq_s»
being the most common.””"*** Many lines of investigation have
shown that Ap generated via the amyloidogenic pathway has a strong
propensity to form fibrils and to aggregate, with AB4_s, being more
aggregenic than ABq_so."” The processing of APP to AB and the
subsequent aggregation of Ap are thought to be key pathological
events in the AD cascade and a great deal of research has focused on
factors involved in APP processing and methods to modulate
processing along the amyloidogenic pathway.”?#

Most therapeutic approaches for AD have been focused at reducing
ApB accumulation by decreasing APP metabolism by blocking p- or
y-secretase activity,®* by preventing aggregation of Ap** or by
promoting clearance.**

Secretase inhibitors have been designed against both B- or
y-secretases and both have been shown to lower plasma AB in
rodents,® and in cerebrospinal fluid (CSF) and plasma in primate
models of the disease.” However, the development of these inhibitors
has been hampered by the need to have them pass through the
blood-brain barrier (BBB), by off-target effects (such as those
associated with y-secretase inhibitors) and their ability to cleave
Notch (a transmembrane receptor involved in regulating cell fate
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Figure 1: Points of Entry for Experimental Treatments
for Alzheimer Disease
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AP = amyloid-beta; ApoE = apolipoprotein E; APP = amyloid precursor protein;

BDNF = brain-derived neurotrophic factor; CDK5 = cyclin-dependent kinase 5; CNTF = ciliary
neurotrophic factor, FAK1 = focal adhesion kinase 1, GSK3p = glycogen synthase kinase 3
beta; IDE = insulin-degrading enzyme; PS1 = presenilin 1, NGF = nerve growth factor;
SAPP@ = soluble APP beta.

decisions) and finally with adverse side effects and toxicity.®* Two
large Phase Il clinical trials of semagacestat, a y-secretase inhibitor,
in mild to moderate AD patients were prematurely terminated due to
cognitive and functional side effects of the drug.”? The recent results
from clinical trials with secretase inhibitors seem to suggest that
despite showing early promise at the preclinical stage, they have
failed to live up to expectations in clinical trials. At present, most in
vivo experimental research has been focused at testing y-secretase
modulators and at developing more specific and BBB penetrating
B-secretase inhibitors. Work is also underway to develop compounds
that stimulate a-secretases.”

Therapies Aimed at Ameliorating the
Pathological Accumulation of Amyloid-beta

or Tau

This includes therapies aimed at reducing the aggregation of Ap and
tau** and at increasing clearance. Strategies contemplated for the
removal of pathologically accumulated proteins include approaches
such as chaperone-mediated clearing, stimulation of autophagy or
proteosomal activity or increasing the proteolytic cleavage (for
example by using Neprilysin to cleave AB) or by modulating
chaperone-like activity.**

Chaperone-mediated clearance co-opts the natural ability of all cells to
conduct a quality control process designed to prevent the build-up
of abnormally folded or toxically aggregated proteins. Chaperones
can inhibit protein misfolding, interfere with abnormal aggregation
and may even promote the correct folding of misfolded proteins.®*
Chaperones can also target misfolded proteins for degradation via
various cellular pathways including the ubiquitin-proteosome pathway
or chaperone-mediated autophagy.®* The best characterised
chaperones are the heat shock proteins (HSPs)** and a number of
studies suggest that up regulation of HSPs can suppress Ap aggregation
and toxicity.”** Collectively, these studies support a potential
therapeutic application of chaperone function modulation for disorders
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that are characterised by protein misfolding and aggregation, such as
AD. Moreover, HSPs such as Hsp70 and Hsp90 have been shown to play
a significant role in tau clearance and processing.®¢'

An alternative approach to the clearance of proteins has been the use
of antibodies targeting pathological forms of AB or tau. The
observation that elderly AD patients express autoantibodies against
Ap¥ and tau® suggests that the immune system is capable of
mounting a response against the pathological forms of these proteins.
In this context a number of groups conducted studies aimed at
inducing or enhancing this immune response. To date,
immunotherapeutic approaches to AD have mostly targeted Ap, as it
is a secreted protein that can be found in plasma and CSF and is easily
accessible to circulating antibodies.*

The first immunotherapeutic approach based on preclinical
pioneering work by Shenck et al.®* to reach the clinical trial stage
was an active immunisation protocol using the AN1792 antibody
(Elan Pharmaceuticals, Inc). A number of positive features of this trial
included the ease of administration and the prospect of lifelong
immunity. However, this trial was halted in 2002 when a small
number of participants reported adverse side effects,*” these effects
have since been linked to the choice of adjuvant and a T cell
recognition site. Subsequent clinical trials have included active
immunisation with CAD-106 (Novartis), a peptide vaccine that
contains a short N-terminal fragment of AR which reportedly does
not induce the T cell response observed with AN1792.% Results from
this trial report no significant differences between CSF AB levels and
magnetic resonance imaging (MRI) whole brain volumes between
treated and placebo patients.s

Based on preclinical studies in the platelet-derived growth factor
beta-APP (PDAPP) model of AD,*”" a transgenic (tg) mouse model of
AD that overexpresses mutuant APP, a number of passive
immunisation approaches have also reached clinical trial stage
including the Phase Il Elan/Wyeth antibody Bapineuzumab trial, which
showed side effects such as vascular oedema in the high dose cohort
(2.0 mg/kg) resulting in this dose being excluded from the Phase I
trial.”?”* Bapineuzumab has also been reported to reduce cortical PiB
retention in AD patients.”” While recent Bapineuzumab clinical trial
results have failed to produce significant cognitive improvements in
patients, results from animal models suggest that this approach may
be better suited to the early, preclinical stages of the disease and
therefore may have a more preventative rather that therapeutic
function. Another passive immunisation approach is the humanised
monocolonal antibody Solanezumab from Eli Lilly, which was also
well-tolerated at lower doses and showed a dose-dependent increase
in CSF and plasma levels of Ap.”

In recent years some groups have investigated the possibility of utilising
immunotherapy to target abnormally phosphorylated tau. As previously
mentioned, NFT form the other neuropathological hallmark of AD, these
are intracellular accumulations of tau, a microtubule associated
protein, which is hyperphosphorylated at multiple epitopes.”” This
hyperphosphorylation has been linked to tau propensity to aggregate
and a loss-of-function with regard to the ability of tau to stabilise the
microtubule structure and facilitate axonal transport.®#

Two recent studies have shown that immunisation against
phosphorylated forms of tau might be effective at reducing NFT
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pathology in vivo and slowing the progression of behavioural deficits
in tg mouse models of AD.®*

Unlike AB, which is a predominantly extracellular protein, tau and
the hyperphosphorylated forms of tau are intracellular and have
traditionally thought to be inaccessible to antibodies. However, recent
work has shown that aggregates of a-synuclein, an intracellular
synaptic protein that accumulates in the brains of patients with
Parkinson'’s disease (PD) and AD were reduced following active® and
passive® immunisation against a-synuclein in a tg mouse model,
indicating that intracellular proteins could also be potential targets of
immunisation. This might be related to recent findings in in vivo models
showing that aggregated a-synuclein® and tau’*” can be released from
neurons and propagate to other cells in a prion-like fashion.

In 2007, Asuni et al. demonstrated that active immunisation with the
tau peptide 379-408, phosphorylated at serine residues 396 and 404
(Tau379-408: Ser396/404) was effective at reducing the levels of tau
aggregates in the brain of P301L tg mice, a model of tauopathy.®
These particular epitopes were chosen as they were known to be
pathological forms of tau found in AD brains and had been reported
to increase the fibrillogenic nature of tau increasing its propensity to
assemble into paired helical filaments (PHFs). Asuni et al. showed that
active immunisation with the Tau379-408: Ser396/404 peptide was
capable of inducing antibodies against the phosphorylated forms of
tau and in the immunised mice the reduction in tau aggregation was
accompanied by an amelioration of the sensorimotor deficits
associated with tau pathology.®#

Neuroprotective Approaches to Alzheimer’s
Disease Involving Key Pathways and

Signalling Molecules

Oxidative stress has been proposed to be a key pathway underlying
pathogenesis in AD.”* A has been reported to bind to mitochondrial
membranes, interact with heme and interfere with the normal
electron flow through the respiratory chain, resulting in a faulty
mitochondrial energy metabolism and in an increased production
of reactive oxygen species (ROS).” Antioxidant therapies such as
vitamin E and resveratrol have been investigated in animal models
for their therapeutic potential in AD, with varying degrees of
success.” While memantine, a currently available AD therapy, targets
the NMDA receptor, further studies on the glutamate system in AD
have focused on the role of other glutamate receptors including
alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and
metabotropic glutamate receptors.”

The loss of AMPA receptor-mediated transmission in AD has been
reported to be modulated by AB4_s.”” A recent study found that an
agent that blocks AMPA receptor desensitisation, cyclothiazide,
prevented oligomer-induced reduction of excitatory postsynaptic
currents (EPSCs), consistent with AR acting by inhibiting glutamate
uptake." Furthermore, micromolar concentrations of synthetic AB_sp
oligomers, especially in the presence of cyclothiazide, can rapidly
trigger AMPA receptor-dependent inward currents and delayed
neurodegeneration in cultured cortical neurons.” Taken together, these
findings indicate that agents designed to directly boost AMPA receptor
function in AD may have a relatively narrow therapeutic window.

Stimulation of Group 1 metabotropic glutamate receptors (mGIuR 1 and
5) leads to activation of a wide variety of signalling pathways and other
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downstream protein kinases, such as extracellular signal-regulated
protein kinases (ERK) 1/2 and Akt, which in turn have been implicated
in cellular growth, differentiation and survival.” mGIuR1/5 signal
transduction is complex and involves multiple partners, and alterations in
MGIUR signalling have been implicated in neurodegenerative disorders
such as AD, PD'™ and Huntington’s disease.”™ mGIUR5 inhibitors,
currently employed for the treatment of Fragile X syndrome, have been
shown to reduce Ap production in rodent models."”

A number of groups have investigated signalling pathways involved in
AD, and the Wnt pathway has been a particular area of interest. Tight
regulation of Wnt signalling is a prerequisite for normal neural
development as well as for the maintenance of neuronal homeostasis
and synaptic plasticity in adults.”"* Previous studies have linked Wnt
signalling to neurodegenerative disorders such as AD."" In fact,
strong evidence suggests that a loss of Wnt function is implicated in the
pathophysiology of neuronal degeneration of AD. Compounds such
rosiglitazone, a peroxisome proliferator-activated receptor-y agonist,
and lithium have been shown to attenuate the neurotoxic effects of Ap,
both of these drugs activate Wnt signalling."” In addition to its effect on
glycogen synthase kinase 3 beta (GSK3p), lithium is known to modulate
cyclin-dependent kinase 5 (CDK5), another kinase that has been linked
to the abnormal hyperphosphorylation of tau in AD."*™"

Oxidative stress, glutamate signalling and the Wnt signalling pathway
are only a few of the pathways thought to play a role in AD."Given
the number of alternate pathways implicated in AD, such as p38, Akt,
c-Jun N-terminal kinase (Jnk), among others, it seems likely that the
most efficacious AD therapies would act upon a number of these
pathways in tandem.

Neurorestorative Approaches Aimed at
Neurogenesis and Synaptic Plasticity

Since the first report of the production of new neurons in the adult
hippocampus," research has shown that various neurotransmitter
systems, growth factors, neurotrophins, cytokines and hormones are
major regulators of neurogenesis." Studies in tg animal models of
different neurological disorders have shown significant alterations in
neurogenesis in the hippocampus under pathological conditions.™

Interestingly, a number of molecules central to AD have been found to
play a regulatory role in adult neurogenesis.” " Mutations of presenilin
1 (PS1) have been shown to negatively affect the production of new
neurons.""™ Similarly, the proliferation and survival of neuronal
precursor cells was shown to be reduced in tg mice expressing a
chimeric mouse-human APP-695swe (APPswe) polypeptide, a mutated
form of APP that causes early onset familial AD (FAD).™

In the mature brain, neurogenesis is believed to play an important
role in maintaining synaptic plasticity and memory formation in the
hippocampus.®” In AD, the most significant correlate to the severity of
cognitive impairment is the synaptic loss in the frontal cortex and the
limbic system."”"* Synaptotoxic effects have been observed with
soluble ApB oligomers prepared from multiple sources such as
synthetic AB peptides, APP-transfected cell culture supernatants, APP
tg mouse brain and even human AD brain tissue.” At nanomolar to
low micromolar concentrations, soluble A oligomers impair excitatory
synaptic transmission, inhibit long-term potentiation (LTP), induce loss
of dendritic spines and impair rodent spatial memory.™"* In contrast
to suppression of LTP, long-term depression (LTD) is unaffected or
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even enhanced by AB.™ Thus, in terms of synaptic plasticity, exposure
to AB seems to favour the weakening and oppose the strengthening
of synapses. Consistent with its functional effects on LTP and LTD,
prolonged exposure to AP leads to morphological loss of
synapses. ™% AB,_s,, Which is more prone to aggregation and more
toxic than AB4_s, is also more effective at impairing LTP and reducing
spine density. Furthermore, dysregulated cholinergic signalling is an
early hallmark of AD and it is interesting to note that Ap oligomers have
been shown to induce cholinergic neurodegeneration in the nucleus
basalis™ and, at hanomolar concentrations, to inhibit the activity of
choline acetyltransferase (ChAT).™

Given the deficits in neurogenesis, synaptic plasticity and deficits in
glutamatergic and cholinergic systems in AD, it would be reasonable to
hypothesise that compounds capable of intervening in these processes
would show a serious promise in the development of new treatments.
One such type of compound may be related to modulation the activity
of neurotrophic factors (NTFs). NTFs are secreted proteins that promote
the differentiation, growth and maintenance of developing neurons and
the survival of adult neurons™* and include members such as nerve
growth factor (NGF) and brain-derived neurotrophic factor (BDNF),
signalling molecules in various cellular pathways, which regulate
development, proper functioning, survival and regeneration of nervous
tissue under physiological conditions and most importantly after injury.
NTFs including NGF and BDNF have been widely reported to be altered
in a number of neurodegenerative disorders including AD,"'* and
many studies have looked at NTF replacement strategies in an effort to
stave off neuronal dysfunction and death in these disorders with a
number reporting beneficial effects.™ The results of the first clinical trial
of NGF gene therapy in AD were published in 2005 and reported
no long-term adverse effects of implanting autologous fibroblasts
genetically modified to express human NGF into the forebrain.

BDNF gene delivery into tg mice expressing mutated (Swedish
K670M/N671L, London V7171) human (h) APP751 under control of the
mouse thymus cell antigen-1 (mThy-1) promoter (mThy1-hAPP751 tg
mice; Line 41)" reverses synapse loss, partially normalises aberrant
gene expression, improves cell signalling and restores learning and
memory.™ These outcomes occur independently of effects on
amyloid plaque load. In aged rats, BDNF infusion reverses cognitive
decline, improves age-related perturbations in gene expression and
restores cell signalling.*® The therapeutic effects of BDNF have also
been assessed in non-human primate models, where BDNF
gene delivery to the entorhinal cortex, significantly ameliorated
lesion-induced entorhinal cortical neuronal death, improved
hippocampus-dependent memory and increased neuronal size.'

Given the large molecular weight of NTFs, such as NGF and BDNF in
comparison with chemical compounds, the key challenge in the field
of growth factor therapy is drug delivery to the CNS and to this end
a number of NTF-based therapies are currently in the clinic,
including those focusing on methods of delivering NTFs, particularly
NGF (AAV-NGF, [CERE-110, NCT00876863]), encapsulated cell
biodelivery of NGF [NCT01163825].

AD, like many neurodegenerative disorders, occurs as a result of the
progressive loss of structural or functional integrity of neurons. In this
context, many groups have tried to replace damages/lost neurons in
the hope of restoring neuronal function and have explored stem cell
therapy as an alternative neurorestorative approach in models of
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Figure 2: Multimodal Mechanisms of Action of
Cerebrolysin in Preclinical Models of Alzheimer Disease
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neurodegenerative conditions such as PD.™ Rodent AD models
receiving neural precursor cell (NPC) grafts demonstrate increased
hippocampal synaptic density and increased cognitive function
associated with BDNF production.™ " Combining engineered growth
factor overexpression with the benefits of NPC integration into neural
networks may provide an enhanced approach to treating AD. The
results of these will be interesting in light of recent stem cell studies
in PD that have shown host to graft transmission of a-synuclein.”"

Given the multiple mechanisms associated with AD pathology, and the
apparent failure of single-target approaches to therapeutics, it is likely
that the most efficacious AD therapy will target multiple components
of the AD pathophysiological cascade from the processing of APP, the
abnormal accumulation of A, hyperphosphorylation of tau combined
with a neuroprotective and neurorestorative neurotrophic factor-like
effect.”™ It is most likely that truly disease-modifying treatment for AD
will be a multi-target compound with actions at intersecting nodes on
pathogenic pathways associated with AD.

A Multimodal Approach to Alzheimer’s Disease -
Preclinical Studies in Transgenic Mice

One example of a multimodal approach to the treatment AD is the
J147 compound, a curcumin derivative which has a broadly
neuroprotective effect including the ability to prevent memory deficits
in a tg mouse model of AD associated with an increase in levels of
BDNF and BDNF responsive proteins, enhancement of LTP, synaptic
preservation, reduction oxidative stress and inflammation and lower
levels of soluble ABq_so and AB4_go."™

Another interesting set of compounds that display a multimodal
activity are antidepressants such as fluoxetine. This family of
compounds increase levels of BDNF, glial derived neurotrophic factor
(GDNF) and NGF, stimulate neurogenesis, are neuroprotective and
stabilise mood.™"# A further example of a model multimodal drug is
CBL, a neuropeptide preparation produced by a standardised
enzymatic breakdown of purified brain proteins (see Figure 2). CBL
contains low-molecular-weight peptides (<10 kDa) and free amino
acids and has been reported to have beneficial effects in tg models of
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AD™¢ and in human clinical trials.™*' CBL is known to be composed
of small peptides with neurotrophic activity similar to ciliary
neurotrophic factor (CNTF), GDNF and insulin-like growth factors-1
and -2 (IGF-1, IGF-2) and it is the activity of these small peptides that
are thought to be involved in the neuroprotective effects of CBL."
In addition to effects on disease-related proteins, CBL has been
reported to have neuroprotective actions, typified by studies that
have shown that CBL protects cholinergic neurons after fimbria—fornix
lesion™'® as well as protecting the CNS in models of stroke.” CBL
has recently been shown to modulate the pro-NGF/NGF balance in the
mThy1-hAPP751 tg mice resulting in a concomitant amelioration of
cholinergic deficits in these mice."”

In addition to its neurotrophic-like effects, CBL has been reported to
reduce amyloid deposition; this has been linked to CBL-regulated
modulation of APP maturation and its intracellular distribution.”'
Studies in mThy1-hAPP751 tg mice have shown that CBL is able to
modulate the activity of kinases involved in APP phosphorylation by
reducing the levels of the active form of CDK5 and its activators p35
and p25 and increasing the level of inactive GSK-3p."

Furthermore, since GSK-3p and CDKS5 are known to phosphorylate tau
at epitopes critical for the formation of NFTs, the effect of CBL
treatment was investigated in mThy1-hAPP751 tg mice that received
bilateral intrahippocampal adeno-associated virus (AAV2)-mutTAU
injection and results from these studies confirmed the previously
reported modulating effect of CBL on the activity of CDK5 and GSK-38
but also demonstrated a decreased abnormal phosphorylation of
tau, resulting in improved neurodegenerative pathology in the
hippocampus in the treated mice."”?

Collectively these studies demonstrate that CBL is able to modulate
the aggregenic properties of the key neuropathological hallmark
proteins in AD, by either the modulation of APP maturation or
modulation of tau hyperphosphorylation, in both cases CBL appears
to be having this effect by virtue of its activity on key signalling
molecules such as GSK3p and CDK5.

Neuropathological examination of mThy1-hAPP751 tg mice treated
with CBL have shown that CBL promotes synaptic regeneration.
After treatment with CBL for four weeks, brain sections
immunolabelled with antibodies against synaptophysin, a synaptic
marker protein showed preservation of synaptic terminals in the
frontal cortex and hippocampus of treated mice," an effect which
correlated with improved behavioural performance in the Morris
water maze - a sensitive procedure to test spatial orientation and
learning in rodents."”

The neuroregenerative effects of CBL are supported by its ability
to promote neurogenesis. The effects of CBL on neurogenesis
were studied in mThy1-hAPP751 tg mice injected once-daily with
bromodeoxyuridine (BrdU, a marker for the dividing cells) followed by
daily intraperitoneal injections of CBL."*® Compared with wild-type
controls, saline-treated tg mice showed decreased numbers of
neural progenitor cells (BrdU+ and doublecortin [DCX+]) in the
subgranular zone of the dentate gyrus. However, mThy1-hAPP751 tg
mice treated with CBL demonstrated a significant increase in
the number and migration of these newborn nervous cells, and a
decrease in terminal transferase Tdt-mediated dUTP-biotin
end labelling (TUNEL) apoptotic activity. CBL had no effect on cell
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proliferation or the ratio of neural progenitor cells converting to
neurons and astroglia in the neurogenic area of the hippocampus.'®
These findings are in line with previous studies in cultured neural
progenitor cells and in normal adult rats investigating the effects of
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CBL on dentate gyrus neurogenesis.”

The protective and reparative effects of CBL have been translated

Moreover, the behavioural and other functional benefits, as
assessed by neuropsychiatric tests and activities of daily living,
respectively, were noted to persist for several months after stopping
CBL treatment in patients with AD or vascular dementia."®

A similar persistence of beneficial effect on spatial learning and
memory following treatment interruption has been reported in the

into clinical trials demonstrating that CBL is a well-tolerated

treatment for neurological disorders like ischaemic stroke, dementia
and traumatic brain injury."”>"7¢ Clinical trials with CBL have shown
that it improves cognition in patients with mild to moderate AD"-""
and the activities of daily living and psychiatric deficits in patients
with moderate to moderately severe AD. Several randomised
double-blind studies in patients with AD have shown that CBL is
consistently superior to placebo at reducing cognitive alterations. ™

mThy1-hAPP751 tg mice."?

Collectively, the results from animal and human studies show that
CBL has the potential to effect AD at many points along the
pathological cascade and as such potentially provides a much
broader protection than therapies aimed at a single pathological
mechanism alone. It is likely that this broad-spectrum approach,
coupled with a biomarker-driven earlier detection of AD may
represent the future of AD therapy. &
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