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Abstract
Findings of stroke-induced neurogenesis in the adult brain have raised hopes that amplification of endogenous neurogenesis contributes

to improvement of neurological outcomes. This article briefly reviews stroke-induced neurogenesis and emerging potential therapies

aimed at amplification of endogenous neurogenesis during stroke recovery.

Keywords
Cerebral ischaemia, endogenous neurogenesis, angiogenesis, subventricular zone (SVZ), therapies 

Disclosure: The authors have no conflicts of interest to declare.

Received: 9 August 2011 Accepted: 19 September 2011 Citation: European Neurological Review, 2011;6(4):246–8

Correspondence: Michael Chopp, Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, US. E: michael.chopp@gmail.com

Support: The publication of this article was funded by EVER Neuro Pharma GmbH. The views and opinions expressed are those of the authors and not necessarily those of

EVER Neuro Pharma GmbH.

In the adult rodent brain, neurogenesis occurs primarily in the

subventricular zone (SVZ) of the lateral ventricle and in the subgranular

zone (SGZ) of the dentate gyrus, and neurogenesis persists for 

the lifetime of the animal.1–9 In the adult human brain, neurogenesis

occurs in the hippocampus and SVZ.10 Studies in experimental stroke

demonstrate that focal cerebral ischaemia increases neurogenesis in

the SVZ and induces SVZ neuroblast migration towards the ischaemic

boundary.11–25 Stroke-induced neurogenesis is present in the adult

human brain, even in advanced-age patients.26,27 Findings of endogenous

neural progenitor cell reservoirs in response to brain injury in the adult

brain have raised hopes that amplification of endogenous neurogenesis

may replace damaged neurons and stimulate restorative processes 

in the brain microenvironment, which may subsequently improve

neurological outcomes. This article briefly reviews stroke-induced

neurogenesis and emerging potential therapies aimed at amplification of

endogenous neurogenesis during stroke recovery.

Stroke Induces Neurogenesis
In the rodent, neural stem cells in the adult SVZ generate neuroblasts

that travel the rostral migratory stream to the olfactory bulb, where

they differentiate into granule and periglomerular neurons.28–30

Neuroblasts generated in the SGZ differentiate into dentate granule

cells and integrate into pre-existing neuronal networks. More than

30,000 neuroblasts are generated daily in the rodent SVZ.31,32 Neural

stem cells are present in the SVZ of the adult human brain.33,34

Although the cellular composition and cytoarchitecture of the adult

human SVZ differ from those of the adult rodent SVZ, the presence 

of a human rostral migratory stream organised around a lateral

ventricular extension to the olfactory bulb has been demonstrated.35 

Stroke induces neurogenesis that involves proliferation, differentiation

and migration of neural progenitor cells.11–25 Proliferation of neural

progenitor cells is tightly controlled by cell cycle kinetics.36,37 Studies in

the rodent indicate that stroke reduces the G1 phase of the SVZ

neural progenitor cell cycle, resulting in early expansion of a neural

progenitor pool in the SVZ.38–40 Neural progenitor cells preferentially

differentiate into neuroblasts.38–40 The neuroblasts then migrate 

out of the SVZ to reach the ischaemic cortex and striatum.41,42

During migration, individual neuroblasts actively change directions

by extending or retracting their processes, suggestive of probing 

the immediate microenvironment.41 Newly arrived neuroblasts 

in the ischaemic boundary regions exhibit phenotypes of mature

neurons.11,12,15,16,18,43 Using the patch-clamp technique, studies show that

the new neurons in the ischaemic boundary have electrophysiological

characteristics of mature neurons, suggesting that neuroblasts mature

into resident neurons and integrate into local neuronal circuitry.44

Ageing decreases neurogenesis in the dentate gyrus and SVZ in the

rodent45–48 and stroke primarily occurs in aged patients. Data from 

the aged rodent show that stroke can augment neurogenesis in 

aged animals.45–48 However, the degree of stroke-induced neurogenesis

in the aged rodent is substantially less than in the young adult 

rodent.45–48 Stroke-induced neurogenesis has also been demonstrated in

the adult human SVZ and ischaemic boundary, even in advanced-age

patients.10,26,27,49 The effect of neuroblasts on the ischaemic brain extends

beyond the replacement of damaged neurons. Under physiological

conditions, neurogenesis in the SVZ and the SGZ of the dentate 

gyrus occurs within an angiogenic niche.50 Neurogenesis couples 

with angiogenesis in the ischaemic brain. Neural progenitor cells

express an array of angiogenic factors that promote angiogenesis in 

the ischaemic brain,51,52 while cerebral endothelial cells activated 

by stroke secrete an array of factors including chemokines and

neurotrophic factors that attract migrating neuroblasts to the ischaemic

boundary and support the survival and maturation of newly arrived

neuroblasts, respectively.50,53,54
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Therapies Enhance Endogenous Neurogenesis
Endogenous neurogenesis in response to stroke is limited and only 

a small population of newly generated neurons survives, while 

the vast majority of neuroblasts die in the ischaemic boundary

regions.16,18,42 There are emerging therapies in experimental stroke

which aim to amplify endogenous neurogenesis and to improve the

ischaemic microenvironment to be receptive to integration of newly

arriving cells within the tissue. These therapies are usually initiated

days after stroke, which differ from neuroprotective therapies that

start within hours after stroke onset. 

Infusion of a variety of neurotrophic and growth factors, including

basic fibroblast growth factor (bFGF), epidermal growth factor (EGF)

and brain-derived neurotrophic factor (BDNF), into the lateral ventricle

of the rodent with stroke further increases neurogenesis.13,55–58

Treatment of stroke in the rodent with bone marrow mesenchymal

cells (MSCs) days after stroke stimulates brain parenchymal cells to

secrete an array of neurotrophic factors, leading to augmentation of

neurogenesis.59,60 A significant improvement in neurological function

and enhancement of neurogenesis have been observed even 

one year after stroke in animals treated with MSCs.61 Patients with

ischaemic stroke treated with autologous bone marrow MSCs show

no adverse effects and exhibit functional improvement.62 Cerebrolysin

is a peptide preparation which has demonstrated robust neurotrophic

effects in the rodent.63 Administration of cerebrolysin to the rat 

24–48 hours after stroke significantly increases neurogenesis and

improves neurological outcome 28 days after stroke.64 Cerebrolysin

enhances proliferation and differentiation of SVZ neural progenitor

cells and increases numbers of neuroblasts migrating to ischaemic

boundary regions.64

Vascular endothelial growth factor (VEGF) is an angiogenic growth

factor.65 Intraventricular infusion of VEGF increases neurogenesis in

the SVZ and dentate gyrus of adult mice.66 Treatment with VEGF

24 hours after stroke enhances angiogenesis and neurogenesis.66,67

In addition to its role in erythroid progenitors, endogenous

erythropoietin (EPO), through its receptor, EPOR, regulates

neurogenesis in the adult rodent brain.68,69 Studies in vivo in the rodent

after stroke and in vitro studies with cultured neural progenitor 

cells and cerebral endothelial cells indicate that exogenous EPO

elevates VEGF and BDNF levels in the ischaemic brain, and that 

EPO-increased VEGF increases angiogenesis. The newly generated

vessels produce BDNF which then fosters neurogenesis. In addition,

EPO also has direct effects on neurogenesis.68,70–73

The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway

plays dual roles in promoting angiogenesis and neurogenesis in the

ischaemic brain. NO is an activator of soluble guanylate cyclase and

causes cGMP formation in target cells.74,75 The phosphodiesterase type 5

(PDE5) enzyme is highly specific for hydrolysis of cGMP, and sildenafil

citrate and tadalafil are potent inhibitors of PDE5, causing intracellular

accumulation of cGMP.76 PDE5 is present in the brain.77 Administration

of sildenafil and tadalafil to adult and aged rats one to seven days 

after stroke increases angiogenesis and neurogenesis and improves

neurological outcomes.77,78 Application of sildenafil to a locked-in patient

evoked a remarkable recovery.79 A dose-tiered clinical Phase I safety

trial of sildenafil in stroke patients is on-going, with patients treated

from three to seven days post-stroke. In addition, administration of 

the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase

inhibitors atorvastatin and simvastatin 24 hours after stroke increases

angiogenesis, neurogenesis and brain levels of cGMP.80

Neurogenesis in the adult brain is related to neurological function.81

However, there are currently no data to demonstrate the causality of

endogenous neurogenesis to functional recovery after stroke.

Neurogenesis enhanced by cell-based and pharmacological therapies

is often coupled with angiogenesis. Thus it is likely that improved

neurological function observed after these therapies results from a

composite of events including angiogenesis, neurogenesis and axonal

as well as dendritic plasticity.82 n
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