
For several decades, levodopa-based treatments have been the

mainstay of Parkinson’s disease (PD) therapy. However, current

treatments do not prevent disease progression and there is no cure. In

an attempt to find disease-modifying treatments, research into

biotechnological treatment approaches such as gene and (stem) cell-

based therapy, is gaining momentum in the field of PD. Gene therapy

has the potential to restore dopamine synthesis capacity in the striatum

or modulate basal ganglia circuitries. In addition to these symptomatic

therapies, gene therapy has potential for disease modification, with the

delivery of neurotrophic factors. In addition to gene therapy approaches,

neurotrophic factors could potentially be delivered by intracerebral

(putaminal) infusion. Major stem cell-based therapeutic approaches in

PD are cell replacement of diseased dopaminergic neurons through

transplantation (restorative approach) or by recruitment of endogenous

adult stem cells (regenerative approach).1

Gene Therapy
To date, only one virus (recombinant adeno-associated virus serotype 2

[AAV2]) has been approved by the US Food and Drug Administration

(FDA) for use in the treatment of brain diseases. Although the virus can

be safely employed in applications involving the human brain, one

methodological disadvantage is that only one gene can be introduced

per vector (two or more vectors are required to treat the patient with

more than one gene). Furthermore, surgical infusion using a

stereotactic procedure that is similar to deep brain stimulation (DBS) is

required for viral vector delivery into the brain.2 Ongoing developments

to address the aforementioned technological issue include novel AAV

(serotype 5) vectors that are able to incorporate larger genes, and

lentiviral vectors that have a higher capacity for more than one gene.

Lentiviral vectors have undergone safety testing in non-human

primates with positive results,3 but clinical data on their efficacy and

safety in PD or other brain diseases are lacking.

Clinical data now exist for all three gene therapy strategies listed earlier

(restoration of dopamine synthesis, modulation of basal ganglia

circuitries and disease modification).

Restoring Dopamine Synthesis
Three different strategies have been proposed for restoration of

dopamine synthesis capacity (see Figure 1): dopamine replacement
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(relies on the introduction of three genes that will result in the

production of dopamine); continuous levodopa delivery (intrastriatal

gene transfer of the dopamine-synthetic enzyme tyrosine hydrolase [TH]

combined with the exogenous administration of the cofactor for TH,

tetrahydrobiopterin, or with co-expression of its rate-limiting synthetic

enzyme, GTP cyclohydrolase 1); and a pro-drug approach for dopamine

production (introduce one gene encoding the enzyme aromatic L-amino

acid decarboxylase [AADC] to metabolise exogenous levodopa to

dopamine).4 Across all strategies, the viral vectors are implanted or

injected into the striatum to induce the production of proteins solely in

the striatal neurons (not the dopaminergic neurons). The dopamine

replacement strategy may confer a risk of dyskinesia or enhanced

neurodegeneration due to excess dopamine, whereas in the continuous

levodopa delivery approach, levodopa is metabolised to dopamine, and

therefore, there is less likelihood of dyskinesia.

To date, clinical data exist only for one of the three possible dopamine

replacement strategies; that is, the pro-drug approach. A recently

published open-label, non-placebo-controlled clinical trial evaluated

the safety and tolerability of AADC expression (introduced via AAV2) in

10 patients with PD (five received a high dose and five received a low

dose).5 The results revealed an approximately 30 % improvement in

motor score (total Unified Parkinson’s Disease Rating Scale [UPDRS]

and UPDRS III) both off and on medication and no relevant induction in

dyskinesia.5 In a subgroup of patients (n=5), positron emission

tomography imaging confirmed expression of the AADC enzyme six

months post-introduction in the high- and low-dose patient cohorts.6

Although the gene therapy was generally well tolerated, a safety

concern was the high frequency of operation-induced adverse events,

primarily three reports of intracranial haemorrhage (30 % of patients)

and self-limited headache.5 It remains unclear whether the risk of

intracranial bleeding is higher with gene therapy than with other

neurosurgical procedures such as DBS.

Clearly, the efficacy and safety of the three strategies for dopamine

replacement via gene therapy require further clinical studies.

Modulating Basal Ganglia Circuitries
The gene therapy strategy of modulating basal ganglia circuitries

involves the delivery of the glutamic acid decarboxylase (GAD) gene

into the subthalamic nucleus via the AAV2 vector. The resulting

increase in the GAD enzyme results in increased levels of the

inhibitory neurotransmitter gamma-aminobutyric acid (GABA) within

the subthalamic nucleus. GABA inhibits activity in this region, thereby

reproducing the effects of STN-DBS (and restoring normal

physiological function to the basal ganglia circuitry). Results were

favourable in a Phase I safety trial using this gene therapy in 12

patients with PD.7 Significant improvements in UPDRS scores were

observed at three months and these persisted until 12 months after

surgery. There was a substantial reduction in thalamic metabolism

that was restricted to the treated hemisphere, and there was a

correlation between motor scores and brain metabolism.7 No gene

therapy-related adverse events were observed. Results from an

ongoing Phase II trial are expected in 2011.

Disease Modification with Gene Therapy
Two trials, to date, have evaluated the gene therapy approach of

disease modification by neurotrophic factor delivery (AAV2-

associated introduction of neurturin [CERE-120]) into the putamen.

This approach aims to promote sprouting from the remaining

dopaminergic neurons and to slow disease progression by reducing

cell death. A Phase I safety trial involved 12 patients with PD, and

results showed no clinically significant adverse events, and a 36 %

improvement in UPDRS III score and increased ‘on’ time without

troublesome dyskinesia.8 However, this study was followed by a

placebo-controlled, double-blind Phase II trial of 58 patients with PD,

which failed to reach the pre-defined clinical endpoint of symptomatic

relief after 12 months‘ follow-up (published data are awaited). In light

of the observed preliminary findings from these disease modification

studies, points for consideration are:

•   Are the results from pre-clinical studies translatable to humans?

Are the right animal models being used?
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Figure 1: Strategies for the Restoration of Dopamine Synthesis Capacity4

5HT = 5-hydroxytryptamine; AADC = aromatic L-amino acid decarboxylase; BH4 = tetrahydrobiopterin ; DA = dopamine; DOPA = dihydroxyphenylalanine; GCH1 = GTP cyclohydrolase I; 
L-DOPA = levodopa; TH = tyrosine hydrolase; Tyr = tyrosine. Copyright (2009) with permission from Elsevier.
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•   Was the wrong endpoint evaluated in the Phase II trial (the factors

introduced were associated with disease modification rather than

symptomatic relief)?

•   Was the neurotrophic factor applied too late in the course of 

the disease?

•   Are longer term data needed?

However, these data are similar to that observed with glial-derived

neurotrophic factor delivery studies using continuous intraputaminal

minipump infusion.9–12

Summary on Gene Therapy
In gene therapy strategies, safe viral vectors are available from which

stable and functional protein expression is feasible. Across strategies,

studies demonstrate approximately 30 % improvement in motor

function and potentially a low incidence of dyskinesia, but the risk of

operation-induced adverse effects is unknown. Currently, there is a lack

of placebo-controlled and long-term data to clarify the effectiveness 

of these strategies. However, as recently cited, ‘‘…the number of

promising gene therapy studies in progress [for PD] is encouraging’’.2

Cell-based Therapy
Restorative Stem-cell Approach
Two double-blind, placebo-controlled trials serve as the clinical basis for

the application of the restorative approach in PD.13,14 The strategy used in

these studies was the heterotropic transplantation method, which

involved the introduction of the dopaminergic cells into the striatum

(target area) as opposed to the place of origin. ‘Proof-of-principle’ for

this approach was demonstrated by observations revealing integration

and functioning of the transplanted cells as dopaminergic neurons and

consequent partial clinical improvement in a subpopulation of patients.

In contrast to the beneficial effects, it is apparent that there are serious

problems associated with the cell transplantation approach including

severe motor side effects (dyskinesia), rapid expansion of the PD

pathology into the transplant including the observation that α-synuclein-

positive Lewy bodies propagate from host to graft cells (raising the issue

that PD has a prion-like component),15,16 high tissue consumption with

the procedure and ethical concerns regarding the use of embryonic

tissue. Thus, there is a need for better cell sources and a more effective

approach for introducing the cells into the target region so as to enable

them to integrate into the circuitries of the basal ganglia. Developments

that may increase the potential of restorative stem cell transplantation

are better cell sources and an approach that ensures integration of the

transplant into the circuitries of the basal ganglia.

There are many sources available from which to produce stem cells and

subsequently the dopaminergic neurons that are required for cell

replacement strategies in PD. Research groups have produced

functional neurons from adult bone marrow, but failed to produce

dopaminergic neurons17 (interestingly, bone marrow stromal cells have

been used to deliver genes encoding neurotrophic factors to the brain in

rodent models18). Similarly, neural stem cells have been produced from

epileptic surgery tissue, but as yet efforts to differentiate these into

dopaminergic neurons have failed.19,20 However, the use of adult adrenal

gland tissue to produce functional dopaminergic neurons has met with

significant success,21 and efforts are underway to transplant these cells

into PD animal models.

The other potential approach to the generation of stem cells that

can be used to produce dopaminergic neurons, is through the

development of induced pluripotent stem cells (iPSCs), which

resemble embryonic stem cells. A variety of transcription factors are

used for the generation of iPSCs, including oncogenes,22 which

results in a high risk of tumour formation. This risk is circumvented

by restricting the factors to a single transcription factor, octamer-

binding transcription factor 4 (Oct 4), using neural stem cells as the

source (as they express all the other factors that are required for

successful reprogramming) and using recombinant protein factors

(to avoid genetic manipulation of the cells). This protocol was

employed in our research group to induce reprogramming of neural

stem cells and produce functional dopaminergic neurons, which

when transplanted into severe combined immune deficiency 

(SCID) mice did not induce any tumour formation. It is evident that

generation of functional dopaminergic neurons from human Oct-

induced iPSCs is possible and can be achieved without viral vectors.

Therefore, iPSCs are a promising cell source for autologous

transplantation approaches in PD, but as yet there are no clinical

data or pre-clinical data in primates.

A further potential source of cells is foetal brain tissue, but only the

cells derived from mid-brain tissue are able to differentiate into

functional dopaminergic neurons (the most complicated cell type to

be produced from stem cells). By adapting the protocol to reduce the

atmospheric oxygen tension in vitro to 3 % (to replicate physiological

levels in the foetal mid-brain), it has been possible to show

differentiation of functional dopaminergic neurons that partially

reconstitute the dopaminergic pathway.23–29 However, this strategy

fails to induce mature dopaminergic neurons after transplantation in

the striatum.24 Thus, low phenotypic stability of the transplanted cells

over the long-term poses a major challenge to the development of

stem cell transplantation strategies in PD. 

These limitations could potentially be overcome by using an

orthotropic transplantation technique, where the cells are

transplanted into the basal ganglia circuitry in order to provide these

neurons with the stimulatory factors that they need to maintain their

dopaminergic capacity. A new approach is to transplant neurons

derived from iPSCs into the substantia nigra and incorporate

optimised innovative biomaterial (derived from polyethylene glycol)

between this area of the brain and the striatum with the aim of

stimulating the projection of the transplanted neuronal axons from

the substantia nigra to the striatum. Preliminary data indicate the

ability of biomaterials to guide human stem cell axonal outgrowth.30,31

These findings lend support to a tissue-engineering approach

involving a combination of innovative biomaterials and autologous

stem-cell-based methods to reconstruct the dopaminergic

nigrostriatal pathway in PD.

Regenerative Approach
Endogenous regeneration is an interesting concept, but the use of

this strategy is hindered by the fact that adult neurogenesis is

restricted to two brain regions – the hippocampus and

subventricular zone of the lateral ventricles – both of which are

located at a distance from the mid-brain. These observations give

rise to questions about whether adult neurogenesis exists in the

mid-brain and whether there are neural stem or precursor cells

with dopaminergic potential within the adult mid-brain.

Neurogenesis was not identified in the mid-brain in investigations in

healthy animals and PD animal models.32 However, there is

evidence to suggest the existence of quiescent stem cells in the
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mid-brain region, which have been shown to differentiate into

functional dopaminergic neurons in culture.33 Quantitative cell

culture showed that 0.3 % of cells in the peri-ventricular region of

the lateral ventricle and 0.1 % of cells in the mid-brain region (in the

fourth ventricle) were neural stem cells.32

Summary on Cell-based Therapy
Controlled clinical data exist to provide ‘proof-of-principle’ for cell

replacement methods in PD, but ethical and scientific limitations

restrict the use of standard intrastriatal cell replacement strategies

using primary cells or tissue. Stem cells and iPSCs, in particular, are

promising cell sources for autologous cell replacement, but the risk of

tumour formation (and other safety issues) and the phenotype

stability of transplants require elucidation. There is evidence to

suggest that integration of transplants into the substantia nigra may

be important for long-term survival, stability and functional outcome.

Summary and Conclusions
Referring back to the title of this article, tomorrow is some distance

away for achieving disease-modifying gene therapy given the problems

in translating data from animal models to the clinical situation, the 

lack of positive clinical data and the methodological limitations

associated with designing suitable studies to accurately measure

disease-modification. However, tomorrow is closer for symptomatic

gene therapy because safe and suitable viral vectors are available,

there are preliminary clinical data supporting ‘proof-of-principle’ and

safety, and controlled Phase II trials are ongoing. Although such data

exist for cell-based therapies, there are significant problems associated

with heterotopic transplantation of primary dopaminergic cells or

tissue. However, this area of research is not devoid of hope as stem

cell-based autologous neural tissue engineering will eventually help to

reinforce cell-based therapies, potentially by reconstructing the

dopaminergic nigrostriatal system in PD. n
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