Multifocal Motor Neuropathy

The Long-term Treatment of Multifocal Motor Neuropathy with Intravenous Immunoglobulin

Leonard H van den Berg

Professor of Neurology, Rudolf Magnus Institute of Neuroscience, Department of Neurology, University Medical Centre Utrecht, The Netherlands

Abstract
Multifocal motor neuropathy (MMN) is a rare, purely motor neuropathy. It is a progressive disorder, most patients eventually developing severe fatigue and weakness in the arm muscles that severely impair daily functioning and quality of life. Unlike other motor neuropathies such as motor neurone disease, MMN is treatable with regular infusions of intravenous immunoglobulin (IVIg). Four double-blind, randomised, placebo-controlled studies have shown that in the short term, IVIg significantly improves muscle strength and disability in more than 70 % of patients. The 11 observational studies reviewed in this article confirm that long-term maintenance treatment with IVIg maintains clinical improvement compared to pre-treatment baseline in most patients. Infusions are generally well tolerated, but regular monitoring and re-evaluation of the IVIg maintenance regimen is essential, as most patients need progressive increases in dosage or reduced intervals between infusions to maintain their response to treatment. In the absence of accepted predictive markers, maintenance IVIg should be individualised, based on each patient’s initial response, disability and the interval between the first infusion and decline in muscle strength.

Keywords
Multifocal motor neuropathy, intravenous immunoglobulin, maintenance, treatment

Disclosure: Leonard H van den Berg has received a travel grant and honoraria from Baxter International Inc.

Received: 5 March 2012 Accepted: 21 May 2012 Citation: European Neurological Review, 2012;7(2):128–33 DOI:10.17925/ENR.2012.07.02.128

Correspondence: Leonard H van den Berg, Department of Neurology G03.228, PO Box 85500, 3508 GA Utrecht, The Netherlands. E: l.h.vandenberg@umcutrecht.nl

Support: The publication of this article was funded by Baxter Innovations GmbH. The views and opinions expressed are those of the author and not necessarily those of Baxter Innovations GmbH.

Multifocal Motor Neuropathy (MMN) is a rare, purely motor neuropathy with a prevalence of approximately 0.6 per 100,000 and a median age of onset of 40 years. Men are more likely than women to be affected, in a ratio of 2.7:1 and are usually diagnosed at an earlier age. Patients with MMN typically present with asymmetrical, predominantly distal limb weakness that follows individual nerves. There is no apparent sensory loss and weakness usually starts in the forearm or hand muscles, though the first symptoms may occur in the distal leg and upper arm. Respiratory and bulbar muscles are unaffected and patients have a normal life expectancy. However, since MMN is a progressive disorder, most patients eventually develop severe fatigue and weakness in the arm muscles, resulting in disability that can seriously impair daily functioning and quality of life.

Unlike other motor neuropathies such as motor neurone disease (MND), MMN is treatable with intravenous immunoglobulin (IVIg). Most patients require regular infusions in order to maintain clinical response and the aim of this review is to consider the effectiveness and safety of long-term or maintenance treatment of MMN with IVIg.

Method
The terms ‘multifocal motor neuropathy’, ‘treatment’, ‘long term’, ‘maintenance’ and ‘IVIg’ were used to conduct a PubMed search of articles published in English language journals between 1 January 1980 and 31 December 2011 (see Table 1). Papers were excluded if they were single case reports, or were superseded by subsequent publications following up the same group of patients.

Results
The manual search of the results of the PubMed literature search identified a total of 14 studies concerning the long-term or maintenance treatment of MMN with IVIg. Three papers were excluded:

- a case report in one patient;
- a publication concerning six patients included in a subsequent, larger study;
- and a study of dose titration in patients on maintenance IVIg.

The remaining 11 studies listed in Table 2 were included in the analysis. All were retrospective, observational studies, except for one cross-sectional, descriptive study.

Patient Demographics
The 11 studies included a total of 297 patients who, except 10 of them, were treated at centres in Europe. One study of long-term home IVig treatment included 26 patients with MMN, but did not provide demographic information. Of the 271 patients included in the remaining 10 studies, 153 (67.53 %) were male. Five studies reported the age of onset of MMN: the lowest median age of onset was 36.5 (21–57) years and the highest was 48 (32–59) years.
Follow-up
Nine of the 11 studies reported duration of IVIg treatment. This ranged from a median of nine (2–32) months in eight patients to a mean of 8.1 (1–17) years in 26 patients.

Intravenous Immunoglobulin Regimen
The initial IVIg dosage regimen was 2 g/kg in two to five days in all studies. Maintenance IVIg dosage and treatment intervals were individualised for each patient, based on their response to treatment and to maintain clinical improvement.

Response to Intravenous Immunoglobulin
In the four studies also including treatment-naïve patients, a minority of patients – 20 of 189 (10.58 %) – were unresponsive to IVIg. Where reported, treatment with IVIg resulted in improvement in muscle strength and disability compared with baseline. Most patients remained dependent on IVIg. Five studies reported cessation of IVIg therapy without relapse in 15 of 99 patients. In a sixth study, three of 10 patients were able temporarily to withdraw from IVIg treatment when clinically stabilised on cyclophosphamide.

Four studies reported IVIg dosage was progressively increased in order to maintain clinical response to treatment. There was significant clinical improvement in 10 patients receiving IVIg for a mean of 7.25 years in one study. However, in three other studies, clinical parameters worsened gradually over time despite treatment with IVIg, though remaining above baseline in most patients.

Factors Predicting Response to Intravenous Immunoglobulin
Results were inconsistent in studies that examined objective factors predicting response to IVIg. Six studies reported the results of antibody testing, but only one found significant changes in anti-GM1 antibodies in response to long-term IVIg therapy.

There was similar inconsistency when studies investigated electrophysiological outcomes. Two found that electrophysiological changes paralleled improvements in paresis and muscle strength in most patients. In other studies, results were inconsistent. A study comparing patients with and without conduction block (CB) found no difference in IVIg efficacy between the two groups, with improvements in distal CMAP amplitude in three of 13 patients with CB and four of 20 without CB. In 16 of 22 evaluable treatment-naïve patients in another study, CB decreased in eight patients (this included complete disappearance of CB in two patients), remained stable in four patients and increased in two patients. Similarly, IVIg reduced the magnitude of CB in individual nerves in 12 out of 16 patients, but CB did not change in one patient and worsened in three patients despite their reporting less disability.

Two studies compared the effects of IVIg treatment on nerves with and without CB at entry to the study. After a mean of 5.6 (4–8) years, proximal CMAP amplitude and area in nerves with CB at baseline significantly increased after IVIg treatment, while distal CMAP area and proximal CMAP amplitude and area decreased in nerves without CB before treatment or during follow-up. In contrast, a mean 7.25 (3.5–12) years treatment resulted in significant net improvement in CB from baseline, including a reduction in proximal CMAP amplitude and area in nerves developing CB during IVIg treatment.

Adverse Effects
Seven of the 11 studies provided information on adverse effects. Infusion-related side effects were generally mild, transient and as expected, with studies highlighting headache, fever, rash, nausea, itching and fatigue. Aseptic meningitis occurred in one patient, while a patient in another study experienced a transient ischaemic attack (TIA) without permanent deficit.

Discussion
IVIg is currently recommended by consensus guidelines as the standard, evidence-based therapy for MMN. Studies of other treatments have been disappointing. Unlike patients with chronic inflammatory demyelinating polyneuropathy (CIDP) and Lewis-Sumner syndrome, patients with MMN do not respond to corticosteroids even given in high, intravenous doses; indeed, this treatment may worsen symptoms. Similarly, plasma exchange may result in the appearance of CB in previously unaffected motor nerves. Immunoabsorption and CSF filtration are also ineffective in most reported patients with MMN.

A recent Cochrane review noted that there is some evidence that cyclophosphamide is effective in MMN when it is used in first-line treatment or when patients do not respond to IVIg. However, its use in maintenance is limited by its potentially significant adverse events, which may be delayed by a number of years. The Cochrane reviewers found little or no robust evidence supporting other, less cytotoxic immunosuppressive agents such as azathioprine, beta interferon, ciclosporin or rituximab. In the only randomised placebo-controlled trial of an immunosuppressive agent in MMN, mycophenolate mofetil did not significantly improve strength or motor function, or reduce the need for IVIg. In contrast, use of IVIg in MMN is supported by evidence from four double-blind, controlled clinical trials. A Cochrane meta-analysis of these short-term trials concluded that, when compared with placebo, treatment with IVIg results in significant improvements in muscle strength and disability in more than 70 % of patients. The studies discussed in this review confirm that, in long-term treatment, IVIg maintains clinical improvement compared with pre-treatment baseline in the majority of patients. However, patients require progressive increases in dosage or reductions in intervals between infusions to maintain this response. As a result, regular monitoring and re-evaluation of the IVIg maintenance regimen are essential.

The mild, gradual decline in muscle strength generally reported in IVIg-treated patients is probably due to continuing axonal degeneration. The single group reporting clinical improvement, as well as re-innervation and significant reduction in CB and axonal degeneration.
Table 2: Summary Results of Maintenance Treatment with Intravenous Immunoglobulin in Multifocal Motor Neuropathy

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient Demographics</th>
<th>Follow-up</th>
<th>IVIg Dose/Regimen</th>
<th>Response to IVIg</th>
<th>Factors Predicting Response to IVIg</th>
<th>Adverse Effects Associated with IVIg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azulay et al., 1997</td>
<td>18 patients (14 male, 4 female)</td>
<td>Mean duration of IVIg treatment: 25.3 (9–48) months</td>
<td>Initial: 0.4 g/kg/day for 3–5 days. Maintenance: 0.4 g/kg/day, treatment intervals determined for each patient based on effect of first course</td>
<td>12/18 patients: final increase in muscle strength (MVIC) of at least 30 %. Parallel subjective improvement of at least one grade on Rankin disability scale. 2/18 patients: IVIg withdrawn without signs of relapse after 12 months. 6/18: non-responsive to IVIg after 3–7 courses</td>
<td>11/12 patients: correlation between long-lasting response to IVIg and initial titre of IgM anti-GM1 antibodies</td>
<td>8 patients: headache, fever, rash. 1 patient: aseptic meningitis</td>
</tr>
<tr>
<td>Cats et al., 2010</td>
<td>88 (64 male, 22 female)</td>
<td>Median age at study inclusion: 52 (27–78) years</td>
<td>Initial: cumulative dose 2 g/kg/day. Median maintenance dose: gradually increased from 12 to 17 g/kg/week (p<0.01)</td>
<td>4 patients never received IVIg. 79/84 patients responded to first course of IVIg (increase of ≥1 MRC grade in at least 2 muscle groups). 5/6 non-responsive</td>
<td>Lack of response to IVIg associated with more axon loss (p<0.01) and longer disease duration before first IVIg treatment (p<0.03)</td>
<td>Not reported</td>
</tr>
<tr>
<td>Delmont et al., 2006 v</td>
<td>33 IVIg-treated patients</td>
<td>Median follow-up after diagnosis: 7 (4–22) years</td>
<td>Initial: 0.4 g/kg/day for five days. Median maintenance dose: treatment intervals determined for each patient to maintain clinical improvement (usually 3 days IVIg every 6–8 weeks depending on response after first infusion)</td>
<td>14/20 patients with CB and 8/13 without CB: improvement of at least 1 point in MRC sum scores. 3/13 patients with CB and 4/20 CMAP amplitudes increased (p<0.05)</td>
<td>Response to IVIg not influenced by CB, IgG anti-GM1 antibodies</td>
<td>Not reported</td>
</tr>
<tr>
<td>Jaspert et al., 1996</td>
<td>8 IVIg-treated patients with CB (4 male, 4 female)</td>
<td>Median duration of IVIg therapy: 9 months (2–32 months)</td>
<td>Initial: 0.4 g/kg/day for five days, repeated (usually for one day) after four weeks at same dosage. Maintenance: dosage and treatment intervals (every 2–12 weeks) determined for each patient according to clinical course. 2 of 8 patients: IVIg dosage increased or treatment intervals reduced to achieve clinical stabilisation</td>
<td>8/8 patients: rapid improvement in pareses and muscle strength. 5/8 patients: continuing regular treatment. Significant improvement from baseline, but deterioration in muscle strength when therapy interrupted. 3/8 patients no longer undergoing therapy: 1/3 in remission for 22 months; 2/8 in incomplete remission for 10–41 months. 7/8 patients: rapid improvement in conduction block or temporal dispersion after first IVIg course. 4/8 patients: CB or temporal dispersion reappeared as before treatment simultaneous with clinical deterioration</td>
<td>Not reported</td>
<td>One patient: headache and sickness during first two treatment cycles. No other clinical/ laboratory adverse effects</td>
</tr>
</tbody>
</table>
Table 2 Continued: Summary Results of Maintenance Treatment with Intravenous Immunoglobulin in Multifocal Motor Neuropathy

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient Demographics</th>
<th>Follow-up</th>
<th>IVIg Dose/Regimen</th>
<th>Response to IVIg</th>
<th>Factors Predicting Response to IVIg</th>
<th>Adverse Effects Associated with IVIg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Léger et al., 2008</td>
<td>40 patients (23 male, 17 female); median age at inclusion: 50.2 (27–54) years. 22 treatment-naïve (13 male, 9 female); median age at inclusion: 48.4 (31–74) years. 18 previously treated (10 male, 8 female); median age at inclusion: 52.2 (27–66) years.</td>
<td>Mean duration of follow-up of 40 patients: 2.2 years (±2.0 years)</td>
<td>Initial: 2 g/kg/day over 3–5 days monthly for at least six months. Maintenance: at same dose if needed by recurrent clinical worsening</td>
<td>8/40 patients: in remission (lasting stabilisation of clinical improvement ≥6 months) without further treatment after initial IVIg therapy during at least 6 months. 25/40 patients: stabilisation or clinical improvement and dependent on maintenance IVIg. 4/40 patients: non-responders. 3/40 patients: data missing</td>
<td>No significant factors (best two non-significant factors: female gender [p=0.08], lower MRC score at inclusion [p=0.07])</td>
<td>Mild and as expected</td>
</tr>
<tr>
<td>Lucas et al., 2010</td>
<td>26 patients of 45 patients with autoimmune diseases receiving home IVIg. No gender or age stated.</td>
<td>45 patients: mean 8.1 (1–17) years since start of treatment</td>
<td>Initial: 2 g/kg/day. Maintenance treatment was begun at a dose of 0.25–1.0 g/kg/day every 1–4 weeks based on duration of clinical response</td>
<td>1/26 MMN patients stopped therapy and in permanent remission. 4/45 total patients returned to hospital infusion for domestic reasons. 2/46 total patients died of unrelated causes</td>
<td>Not reported</td>
<td>No significant infusion-related adverse events</td>
</tr>
<tr>
<td>Meucci et al., 1997</td>
<td>6 patients IVIg-treated (3 male, 3 female). Mean age: 41.3 (26–60) years</td>
<td>Mean duration of IVIg treatment: 47 (37–61) months</td>
<td>Initial: 0.4 g/kg/day for five days. Maintenance treatment: 0.4 g/kg/day for two days + oral cyclophosphamide 1–3 mg/kg/day for two days at time of clinical worsening</td>
<td>6/6 patients: clinical and electrophysiological improvement. 3/6 patients: maintenance IVIg 3/6 patients: returned to IVIg after withdrawal for 17–24 months</td>
<td>Not reported</td>
<td>At end of first IVIg infusion: mild, transient headache (4/6 patients) associated with nausea and moderate fever (2 patients), itching (2 patients). Cyclophosphamide: 2 patients: haemorrhagic cystitis (resolved after withdrawal); 1 patient: persistent amenorrhoea</td>
</tr>
<tr>
<td>See et al., 2007</td>
<td>47 patients (31 men, 16 women). Mean age at onset: 42 (22–74) years</td>
<td>Follow-up all patients: 1–16 years; IVIg-treated patients: mean 6.4 years; untreated patients: mean 4.5 years.</td>
<td>Mean IVIg duration: hospital patients: 3 (1–8) years; home patients: 4.5 (2–12) years</td>
<td>Initial: 0.4 g/kg/day for five days. Maintenance treatment: determined by clinical response over next 6–10 weeks. Treatment intervals adjusted for each patient to prevent clinical worsening</td>
<td>24/47 longterm IVIg (12/24 converted to home treatment). 15/47: no response to IVIg 5/17: unresponsive to IVIg. Initial response to IVIg; marked reduction in disability (p<0.001). Response to maintenance IVIg: significant improvement (p<0.001) compared to pre-treatment ... (cont. next page)</td>
<td>Neither CB nor antibody status predicted response to IVIg</td>
</tr>
<tr>
<td>Study</td>
<td>Patient Demographics</td>
<td>Follow-up</td>
<td>IV Ig Dose/Regimen</td>
<td>Response to IV Ig</td>
<td>Factors Predicting Response to IV Ig</td>
<td>Adverse Effects Associated with IV Ig</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terenghi et al., 2004</td>
<td>10 IV Ig-treated patients (6 men, 4 women). Median age at onset 36.5 (21–57) years</td>
<td>Mean duration of IV Ig treatment: 8.2 (5–12) years</td>
<td>Initial: 2 g/kg/day over 4–5 days. Maintenance dose: 1–1.2 g/kg over 2–3 days at clinical worsening. From year 2 of therapy, IV Ig dosage progressively increased to maintain or achieve improvement</td>
<td>7/10 patients maintained on IV Ig during follow-up. 3/10 patients discontinued IV Ig for 1–4 years because of clinical stabilisation under cyclophosphamide. MRC, limb impairment and Rankin scores at end of follow-up. 5/10 patients improved compared with baseline; 1/10 patient deteriorated to baseline; 1/10 deteriorated below baseline</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van den Berg-Vos et al., 2002</td>
<td>11 IV Ig-treated patients (10 male, 1 female). Median age at onset 40 years (20–58)</td>
<td>Mean duration of IV Ig treatment: 5.6 (4–8) years</td>
<td>Initial: 0.4 g/kg/day for five days. Maintenance dose: one IV Ig infusion every week for one year, then dosage and treatment intervals tailored to each patient’s reported functioning; stable or improved functioning; dose maintained; deteriorated functioning; dose titrated based on hand-held dynamometry</td>
<td>At last follow-up, mean MRC sum score significantly higher than mean scores before first full course of IV Ig (p<0.001). Muscle strength improved significantly within 3 weeks of IV Ig initiation (p<0.02), decreased slightly and significantly during follow-up, but still significantly better at end of follow-up than before treatment. Significant improvement in proximal CMAP and amplitude in nerves with CB before treatment. Reduced distal CMAP area and proximal CMAP amplitude and area in nerves without CB before treatment and during follow-up</td>
<td>Significant association between electrophysiological changes consistent with improvement and CB before IV Ig treatment</td>
<td>Minor headache, rash, fatigue</td>
</tr>
<tr>
<td>Vucic et al., 2004</td>
<td>10 IV Ig-treated patients (4 men, 6 women). Median age at disease onset: 48 (32–59) years</td>
<td>Mean duration of IV Ig treatment: 7.25 (3.5–12) years</td>
<td>Initial: three courses (0.4 g/kg/day for five days) every fourth week. Maintenance: every four weeks, dose adjusted to prevent functional decline before next treatment</td>
<td>At end of follow-up compared with baseline: significant and sustained improvement in muscle strength, functional disability, number of CB, axonal degeneration while receiving IV Ig. 1/10 patients achieved clinical remission 3 years after IV Ig initiation</td>
<td>None stated</td>
<td>1/10 patients: transient ischaemic attack without permanent deficits 2.8 years after treatment initiation. No other adverse effects reported</td>
</tr>
</tbody>
</table>

CB = conduction block; CMAP = compound muscle action potential; IV Ig = intravenous immunoglobulin; MRC = Medical Research Council; MVIC = maximum voluntary isometric contraction.
The Long-term Treatment of Multifocal Motor Neuropathy with Intravenous Immunoglobulin

degeneration, suggest that their findings may be due to the larger mean IVlg maintenance doses used in their study. However, in the absence of comparative dosing studies or further long-term observational studies, the optimal dose and treatment interval for maintenance IVlg has yet to be established.

CB outside the usual sites of nerve compression is the hallmark of MMN and IgM antibodies against GM1 can be detected in about half of all patients. Some studies have found an association between MMN and IgM antibodies against GM1. However, using the lowest effective IVlg dose and the lowest tolerated interval between doses may lead to under-dosing in the long-term. Reduced response to IVlg can be restored in most patients by increasing the dose during the first few years of therapy, but not in longer-term follow-up. So the IVlg maintenance regimen should be adjusted based on close monitoring of each patient’s muscle strength and function, using validated assessment instruments.

Few patients with MMN experience a stable disease course without maintenance treatment with IVlg, but remission does occur in a minority of patients. A thorough evaluation of the effects of the first and subsequent IVlg courses is therefore important to identify these patients before committing them to long-term treatment. Equally, since early initiation of IVlg therapy may help to postpone the development of axonal degeneration and permanent deficits, patients should not be denied a trial of this treatment. This applies especially to patients presenting with a typical MMN clinical phenotype but without evidence of CB, who may respond to IVlg.

Mild and transient side effects such as rash, chills, fever, nausea, malaise, headache and mild arthralgia are common in short-term studies of IVlg in MMN, being reported in up to 71% of patients. The studies in this review confirm that IVlg is also well tolerated when used as maintenance treatment. Two of the studies reported serious adverse events – one case of aseptic meningitis and one TIA – that may have been related to IVlg treatment. This underlines the importance of careful monitoring in patients receiving maintenance therapy, including blood pressure and renal function. Use of loop diuretics should be avoided and patients should be advised to ensure that they are adequately hydrated before IVlg administration.

Because of the importance of monitoring patients’ response and of identifying any serious adverse events, initial courses of IVlg should be administered in hospital. Thereafter, infusion at home is feasible if patients are carefully monitored, and supported and trained by a specialist nurse. Home IVlg not only maintains patients’ function as effectively as hospital therapy, but can be cost saving and is preferred by patients. Subcutaneous immunoglobulin (SClg) has similar advantages, especially for patients with difficult venous access, though some patients may not tolerate subcutaneous treatment or may find self-administration too challenging.

Conclusion

Unlike other motor neuron diseases, MMN is treatable with IVlg. However, although most patients respond to initial and maintenance treatment, progressive axon loss means that there is usually a gradual decline in muscle strength. Randomised controlled studies are needed to determine if axon loss could be prevented by higher dose IVlg regimens or by currently available immunosuppressive therapies. For the future, the development of other effective maintenance treatments is likely to depend on basic research into the underlying pathogenesis of MMN and the subsequent identification of evidence-based targets for therapy.