Abstract
Alzheimer’s disease (AD) is a complex and progressive neurodegenerative disorder resulting in continuous deterioration of cognition, daily living abilities and motor functions and consequently has a huge social and familial burden. To date, the drugs approved for AD treatment provide only modest symptomatic effects. At present, the combined therapy with memantine plus one cholinesterase inhibitor (ChEI) is the best option for the treatment of moderate-to-severe AD. This combination has demonstrated higher clinical efficacy than monotherapy with ChEIs, with similar safety and tolerability in several randomised-controlled clinical trials (RCTs). Recent long-term observational studies have shown that combination therapy slows the rate of cognitive and functional deterioration, delays the placement of patients in nursing homes and also provides evidence that it is more effective when initiated early. None of the drugs for AD tested in Phase III trials show evidence of disease modification. A few studies have shown that the newer drugs, particularly anti-amyloid and neurotrophic agents, may provide improved disease-modifying treatments of AD in the near future. Meanwhile, combination therapy with available drugs is the most effective AD treatment.

Keywords
Alzheimer’s disease, combination therapy, memantine, disease-modifying treatments, cholinesterase inhibitor

Disclosure: The authors have no conflicts of interest to declare.

Acknowledgements: The authors would like to thank Fundación Antidemencia Al-Andalus and Touch Briefings for their technical assistance in the preparation of the manuscript.

Received: 4 April 2012 Accepted: 8 June 2012 Citation: European Neurological Review, 2012;7(2):92–102 DOI:10.17925/ENR.2012.07.02.92

Correspondence: X Antón Álvarez, Fundación Antidemencia Al Andalus, PO Box 7010, 15002-A Coruña, Spain. E: xantonal@yahoo.es

Support: The publication of this article was funded by Merz Pharmaceuticals GmbH. The views and opinions expressed are those of the authors and not necessarily those of Merz Pharmaceuticals GmbH.

Alzheimer’s Disease – A Complex Neurodegenerative Disorder with a Multifactorial Pathogenesis
Alzheimer’s disease (AD), the main cause of dementia, is a neurodegenerative disorder characterised by a progressive decline of cognitive functions (memory, language, praxis, judgement and thinking, orientation and executive functions), increasing disabilities in daily living function and the presence of behavioural and psychological symptoms. In the late to end-stages of AD, motor functions also deteriorate and thus AD causes a continuous loss of mental and physical autonomy in patients and produces a parallel increase in dependency and burden on carer-givers as the disease progresses.

The pathogenic process of AD is complex and may start decades before the condition is diagnosed (see Figure 1). Early molecular alterations give rise to structural changes, which precede the onset of the first symptoms and the later development of the full clinical picture, usually required for diagnosis and treatment. AD aetiopathogenesis is multifactorial and may include genetic mutations and/or risk factors, abnormal processing and deposition of beta-amyloid (Abeta) and tau proteins, inflammation mechanisms, deficits of neurotrophic factors, metabolic dysfunctions, oxidative stress, excitotoxicity and alterations in neurotransmitters such as acetylcholine, noradrenaline, serotonin and glutamate. These pathogenic factors influence the development of the typical AD neuropathology (senile plaques, neurofibrillary tangles, synaptic loss and neuronal apoptosis-degeneration) underlying cognitive impairment and other dementia symptoms (see Figure 1). Progressive impairment of cognition reduces the abilities of AD patients to recall events, to deal with complex mental activities, to stay orientated, to plan and execute tasks and to communicate and interact with others.

The Need for Multimodal Intervention in Alzheimer’s Disease
Drugs currently approved for the treatment of AD, i.e. cholinesterase inhibitors (ChEIs) and memantine, are intended to counteract the pathological consequences of neurotransmitter alterations associated with the disease. Donepezil, galantamine and rivastigmine (ChEIs) enhance cholinergic neurotransmission by inhibiting cholinesterase activity and constitute the first-line standard therapy for mild-to-moderate AD. The uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine, however, is recommended for the treatment of moderate-to-severe AD either as monotherapy or in combination with ChEIs.
Combination Drug Therapy for the Treatment of Alzheimer’s Disease

and seems to protect neurons from excitotoxicity induced via glutamate-mediated pathological activation.26,27

Although these AD treatments are widely prescribed for chronic use, their therapeutic benefits are limited to significant but modest symptomatic improvements with no evidence of disease modification.28,29,30 Improvements of cognition and global outcome and less consistent effects on behaviour and activities of daily living (ADLs), have been reported in randomised placebo-controlled clinical trials (RCTs).30–32 In spite of treatment with ChEIs and/or memantine, AD patients show a progressive decline in cognitive, functional, behavioural and global assessments as demonstrated in long-term follow up studies.33–35

At present, implementation of effective treatment strategies represents an essential and unmet clinical need. The priorities in AD research are development of disease-modifying drugs to be used in early or prodromal phases of the disease and optimisation of symptomatic treatment particularly for more advanced disease stages.36–38 Since the pathogenesis of AD is multifactorial, a multimodal therapeutic intervention addressing several of the molecular targets underlying the pathophysiological pathways involved in AD seems to be the most realistic strategy to modify the course of disease progression.36–38 Thus, the use of drugs having a multimodal mode of action and/or a combination of drugs targeting a single molecular mechanism constitutes a promising alternative for effective AD therapy (see Figure 1).

Potential Benefits of Combination Therapies to Improve Alzheimer’s Disease Treatment

Monotherapy has several limitations in AD regarding disease modification, efficacy and safety. It seems unlikely that any agent acting on a single molecular mechanism may induce changes in AD pathophysiology sufficient to modify disease progression. In addition, treatment with a single drug is usually more effective at high doses, which produces greater or more severe side effects. This is the case with ChEIs; their efficacy increases whereas tolerability declines in a dose-dependent manner.

Treatment with a combination of drugs having different modes of action may provide advantages over monotherapy for the effective pharmacological management of AD.28,29,39–42 Combination therapy may enhance efficacy by inducing additive or synergistic effects; improving safety and tolerability potentially allowing lower doses to be used;43 and rendering additional neuroprotective effects prolonging the symptomatic benefits and ultimately delaying disease progression. This article reviews clinical research evidence on the use of combination drug therapies in AD.

Combination Therapy with Cholinesterase Inhibitors and Memantine

Concomitant treatment with ChEIs and memantine is the combination drug therapy most widely studied and to date, the only one with demonstrated clinical efficacy in AD.22,23 The effects of this combined therapy in AD have been evaluated in RCTs, in open-label trials and in long-term observational studies. RCTs evaluating drug efficacy in AD usually involve assessments of four main categories (global clinical outcome, cognition, functioning in ADLs, and neuropsychiatric symptoms) and are considered demonstrative of clinical efficacy. Results of these studies indicate that combination therapy with ChEIs and memantine reduces the rate of cognitive and functional decline, diminishes the emergence and severity of neurobehavioural symptoms such as agitation/aggression and delays nursing home admission as compared with either no treatment or monotherapy with ChEIs (see Table 1).44–55 There is also evidence that combined treatment is more effective when initiated early.46

Clinical Efficacy

In clinical trials, combination therapy with a ChEI and memantine has demonstrated higher efficacy than monotherapy in patients with moderate-to-severe AD.47–50 For patients with mild-to-moderate disease, this superiority was not demonstrated in a RCT of short duration (24 weeks).51 Observational studies in probable AD patients, however, provided supportive evidence on the long-term effectiveness of combination therapy in reducing cognitive decline and the level of dependence (see Figure 2)44 and in delaying nursing home admission of patients across multiple disease stages.52

A pivotal RCT, (the MEM-MD-02 study) demonstrated the efficacy of combination therapy with donepezil and memantine in moderate-to-severe AD (see Figure 2).44 Combination therapy was associated with a significantly higher rate of study completion (p=0.01) compared with monotherapy. Significant benefits of the combination therapy with memantine extended-release (28 mg/day) versus monotherapy with ChEIs were reported for both cognition and global function in a more recent RCT involving moderate-to-severe AD patients.45,46

Cognitive Effects

Several studies have demonstrated beneficial effects of the combination therapy with ChEIs and memantine on cognition in moderate-to-severe AD patients. The MEM-MD-02 study showed an improvement in cognitive performance (see Figure 2).44 A post-hoc analysis found
Neurodegenerative Disorders

Alzheimer’s Disease

<table>
<thead>
<tr>
<th>Combination Therapy</th>
<th>Study Characteristics</th>
<th>Treatment Regime</th>
<th>Main Outcome(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donepezil + memantine</td>
<td>Phase III RCT Moderate-to-severe AD MMSE score: 5–14 n=404 Duration: 24 weeks</td>
<td>Patients on stable doses of donepezil for approximately 2 years were randomly assigned to receive: Donepezil (5/10 mg/day) + memantine (20 mg/day, after titration); or Donepezil (5/10 mg/day) + placebo</td>
<td>As compared with monotherapy, combination showed significant improvement in SIB (p<0.001), less decline in ADCS-ADL (p=0.028) and improvement in CIBIC+ (p=0.03)</td>
<td>Tariot et al., 2004; Cummings et al., 2006; Feldman et al., 2006; Schmitt et al., 2006</td>
</tr>
<tr>
<td>Rivastigmine + memantine</td>
<td>Open-label, multicentre study Moderate-to-severe AD MMSE <18 n=202 Duration: 28 weeks</td>
<td>Patients failing on donepezil or galantamine received rivastigmine (3–12 mg/day) for 16 weeks Non-responders to rivastigmine at week 16 received memantine (5–20 mg/day) + rivastigmine for 12 weeks</td>
<td>46.3 % showed equal or improved MMSE scores with rivastigmine monotherapy (week 16) versus 77.9 % with rivastigmine + memantine (week 28)</td>
<td>Dantoine et al., 2006</td>
</tr>
<tr>
<td>Rivastigmine + memantine</td>
<td>Open-label, pilot study Mild-to-moderate AD n=90 Duration: 12 weeks</td>
<td>Patients on stable doses of rivastigmine (6–12 mg/day) received memantine for 12 weeks</td>
<td>Significant improvements in ADAS-cog memory subscale, MMSE, digit span and semantic fluency scores with combination therapy</td>
<td>Riepe et al., 2007</td>
</tr>
<tr>
<td>CHEI + memantine</td>
<td>Long-term real-world observational study Mild-to-moderate AD n=382 Duration: 4 years</td>
<td>CoT: CHEI + memantine CHEI alone: donepezil, galantamine, rivastigmine</td>
<td>Significantly lower mean annualised rates of deterioration in cognition (BDS) and functioning (ADL) with combination versus monotherapy or standard care (p<0.001)</td>
<td>Atri et al., 2008</td>
</tr>
<tr>
<td>CHEI + memantine</td>
<td>Phase III RCT Mild-to-moderate AD MMSE score: 10–22 n=433 Duration: 24-week</td>
<td>Patients on stable doses of CHEI for more than 1 year on average were randomly assigned to receive: CHEI + memantine (20 mg/day, after titration) or CHEI + placebo</td>
<td>CoT with memantine did not show superiority over monotherapy on primary or secondary outcomes in patients with mild to moderate AD on stable CHEI regimens</td>
<td>Porsteinsson et al., 2008</td>
</tr>
<tr>
<td>CHEI + memantine</td>
<td>Phase III RCT Moderate-to-severe AD n=676</td>
<td>Patients on stable doses of CHEI for at least 3 months were randomly assigned to receive CHEI + memantine (28 mg/day, extended release) or CHEI plus placebo, 2-week single-blind period of placebo administration followed by a 24-week double-blind period of treatment</td>
<td>Significant improvements in SIB, CIBIC+ and verbal fluency</td>
<td>Grossberg et al., 2008</td>
</tr>
<tr>
<td>CHEI + memantine</td>
<td>Long-term real-world observational study Probable AD n=943 Duration: >1-year follow-up</td>
<td>CoT: CHEI + memantine (n=140) CHEI alone: donepezil, galantamine, rivastigmine (n=387)</td>
<td>As compared with patients receiving no medication, patients on CHEIs had a significant delay in nursing home admission and those on CoT showed an additional significant increase in this delay compared to users of CHEs</td>
<td>Lopez et al., 2009</td>
</tr>
<tr>
<td>Memantine + rivastigmine</td>
<td>Prospective, open-label, parallel-group study Mild-to-moderate AD n=176 completers Duration: 24–25 weeks</td>
<td>Patients on donepezil were switched to rivastigmine patches (9.5 mg/day for 20 weeks after 4–5 weeks titration) Previous memantine was maintained Memantine + rivastigmine versus rivastigmine alone</td>
<td>Rivastigmine transdermal patch in patients on established memantine appears to be well-tolerated and did not seem to affect cognition or global functioning adversely</td>
<td>Farlow et al., 2010</td>
</tr>
<tr>
<td>Rivastigmine + memantine</td>
<td>Open-label Phase IV Mild-to-moderate AD n=172 Duration: 24 weeks</td>
<td>After an 8-week titration period patients received for 16 weeks: rivastigmine 10 cm² patch + memantine or rivastigmine 10 cm² patch alone</td>
<td>No significant differences in tolerability and safety between the treatment groups. No differences in efficacy</td>
<td>Choi et al., 2011</td>
</tr>
<tr>
<td>CHEI + memantine</td>
<td>Single-arm, delayed-start exploratory study Mild-to-moderate AD n=47 Duration: 48 weeks</td>
<td>Patients on stable treatment with CHEIs entered an observational 24-week led-in period and then received add-on treatment with memantine for another 24 weeks</td>
<td>Combined treatment was associated with a significantly slower right hippocampal atrophy (-5.5 % ± 12.0 % versus -10.8 % ± 7.2 %; p=0.038). Memantine treatment was also associated with superior performances on the Boston Naming Test (p=0.034) and the Trail Making Test, Part B (p=0.001), but also with a higher number of errors on the California Verbal Learning Test</td>
<td>Weiner et al., 2011</td>
</tr>
</tbody>
</table>

AD = Alzheimer’s disease; **ADAS-cog** = Alzheimer’s Disease Assessment Scale-Cognitive Subscale; **ADCS-ADL** = AD Cooperative Study-Activities of Daily Living Inventory; **BDS** = Blessed Dementia Scale; **CHEI** = Cholinesterase Inhibitor; **CIBIC+** = clinician’s Interview-based Impression of change plus caregiver input; **CoT** = combination therapy; **MMSE** = mini-mental state examination; **RCT** = randomised controlled clinical trial; **SIB** = severe impairment battery (a measure of cognition).
reported in these two studies suggest there are some positive concomitant memantine treatment. Results of this trial, however, similar in mild-to-moderate AD patients with or without prior and to rivastigmine transdermal patches were also found to be statistically significant differences between the memantine and placebo groups for memory, language and praxis domains of cognition. Significant benefits on cognition were also reported for the therapy with extended-release memantine in moderate-to-severe AD patients receiving stable doses of ChEIs. Cognitive benefits were also found with rivastigmine and memantine combination therapy in AD patients showing no response to rivastigmine alone after failing on donepezil or galantamine treatment.

Data on the cognitive effects of this combination therapy in mild-to-moderate AD are less consistent. The MEM-MD-12 study showed no advantage over monotherapy regarding cognitive performance. In a recent multicentre, randomised, open-label Phase IV trial combination therapy of memantine plus rivastigmine patch did not show improved efficacy over rivastigmine patch monotherapy. Changes in cognition after switching from donepezil to rivastigmine transdermal patches were also found to be similar in mild-to-moderate AD patients with or without prior and concomitant memantine treatment. Results of this trial, however, are limited by the fact that the two experimental groups are not comparable because patients receiving previous memantine therapy had significantly longer disease duration and more severe cognitive and functional impairments.

In contrast, a recent study, designed to assess changes in brain volume and cognitive abilities, showed that add-on memantine treatment in mild-to-moderate AD patients treated with acetyl-cholinesterase-inhibitors (AChEIs) improved language and executive functions. These findings are in line with results from a previous open-label trial showing that treatment with memantine significantly improved cognition in mild-to-moderate AD patients on stable rivastigmine therapy. Cognitive improvements reported in these two studies suggest there are some positive effects of combination therapy on attention, language and executive functions in mild-to-moderate AD.

Finally, in a long-term real-world observational study it was found that combination therapy with ChEIs and memantine reduced the mean annualised rate of cognitive deterioration in mild-to-moderate AD compared with ChEI monotherapy or no treatment (p<0.001 for both). Interestingly, the effect size favouring combination therapy increased during the four-year observation period (see Figure 3). This additive effect indicated that treatment benefits are maintained over time.

Effects on Functioning in Activities of Daily Living

Functional deterioration is the main cause of dependence and increasing care-giver burden in AD. One important therapeutic objective is to improve and/or maintain the capacity of the patients to perform ADLs and to co-operate with care-givers. This will contribute to preserve the autonomy of the patients, to reduce care-giver burden and to delay institutionalisation.

Moderate-to-severe AD patients in the MEM-MD-02 trial showed significantly reduced decline of ADLs function and a significantly lower mean annualised rate of deterioration in mild-to-moderate AD patients who were included in a long-term observational study. The delay to nursing home admission found in another observational study provides additional indirect support to the positive effects of combination therapy on disability in mid-to-late disease stages.
Alzheimer’s Disease

Figure 3: Effects of Memantine in Combination with a Cholinesterase Inhibitor, Compared with Cholinesterase Inhibitor Alone or Placebo on the Rates of Decline in Cognitive (Blessed Dementia Scale) (A) and Functional (Activities of Daily Living) (B) Abilities of Patients with Alzheimer’s Disease

A further data analysis of this trial revealed significant effects in favour of the combination therapy on agitation/aggression, eating/appetite and irritability/interest NPI items. Under combination therapy, patients who were agitated at baseline showed reduced agitation/aggression scores and those who were free of agitation at baseline experienced a significant delay in its emergence. These findings are in agreement with results of the pooled analyses of the behavioural effects of memantine in moderate-to-severe AD. These show that memantine reduces severity or emergence of agitation/aggression and the accelerated progression of global, cognitive and functional decline which are exhibited by the agitated/psychotic patients treated with placebo. Other studies, however, did not find significant effects for ChEI and memantine combination therapy on neuropsychiatric symptoms in patients with mild-to-moderate or moderate-to-severe AD.

Benefits of combination therapy on functioning were not evident in short duration trials performed with mild-to-moderate AD patients. One study reported a higher deterioration of ADL functioning in patients receiving memantine compared with those not receiving memantine, but as mentioned before, the two groups investigated in the study were significantly different at baseline.

Behavioural Effects

Some of the neuropsychiatric symptoms more commonly associated with moderate-to-severe AD, such as agitation, psychosis and night-time disturbances are highly troublesome and a major cause of distress for care-givers. Thus, therapeutic interventions reducing behavioural alterations in AD represent a relief for the care-givers and may help to maintain independence of patients and their adherence to treatment.

Combination therapy with donepezil and memantine resulted in a significant reduction of the worsening of neuropsychiatric symptoms compared with donepezil monotherapy in moderate-to-severe AD.

Alzheimer’s Disease Biomarker Effects

There is only one literature report of a study comparing the effects of ChEI and memantine combination therapy with those of ChEI monotherapy on relevant AD-related biomarkers. A significantly lower rate of atrophy was found in the right hippocampus during the combination therapy period compared with the monotherapy period and no significant differences between study periods for the rates of change in total brain volume (TBV), ventricular volume or left hippocampal volume. Although limited by the low number of patients and the short treatment duration, findings of this study are consistent with those of a previous trial in which patients treated with memantine (20 mg/day for 52 weeks) showed a substantially smaller loss of hippocampal volume (2.4 versus 4.0 %) and less decline in brain glucose metabolism than placebo-treated patients. These results suggest a protective effect of memantine against the degeneration of hippocampal neurons in AD patients.

Long-term Effectiveness Studies

Three recent publications provide complementary evidence on the long-term clinical effectiveness of combination therapy with ChEIs and memantine in AD.

The effects of the persistence (defined as total drug-use years divided by total symptom-years) of treatment with antidementia drugs (ChEIs and/or memantine) on the annual rates of change in clinical measures were evaluated in an observational study involving the follow-up of 641 probable AD patients over 20 years. Patients with more persistent exposure to antidementia drugs over the course of their illness showed significantly slower rates of decline on key measures of cognition (MMSE, p<0.001), global function (CDR-SB, p<0.001), and instrumental ADL (p<0.001). Greater antidementia drug use was also associated with a slower rate of decline on the ADAS-Cog for the first 3.3 years, but not afterwards. Treatment benefits were cumulative over time, as in the study by Atri and colleagues. Although the study did not enable a direct comparison of the effects of combination therapy and monotherapy, it provides additional support for the long-term effectiveness of antidementia treatments.

Safety and Tolerability

Overall, combined therapy in AD is well tolerated with no additional safety concerns compared with monotherapy. A review of safety of memantine and ChEIs concluded that both agents were fairly well tolerated. Both drugs commonly produce dizziness and/or headache. AChEIs are associated with more types of AEs than memantine,
particularly in the gastrointestinal category, and agitation. Withdrawals in memantine-treated groups are comparable to placebo and more common in AChEI-treated groups compared with placebo. Overall, drug–drug interactions, contraindications and warnings were fewer for memantine than AChEIs. Due to vagotonic effects, AChEIs are contraindicated in patients with cardiovascular conditions. They should be used with caution in patients with asthma, obstructive pulmonary disease, seizures, those at risk of peptic ulcers and patients with urinary outflow obstruction. Memantine is contraindicated in patients with known hypersensitivity to the drug and in those with severe renal impairment, and it is recommended to use it with caution in patients with cardiovascular disease or a history of seizure.6 Safety analyses of the main studies mentioned in the clinical safety section showed no relevant differences between memantine plus ChEI combination therapy and monotherapy with ChEIs.44,50,51,58–60

In patients with moderate-to-severe AD, treated with donepezil monotherapy or in combination with memantine, there was a lower rate of treatment discontinuations due to adverse events (AEs) in the combination group (7.4 %) than in the donepezil monotherapy group (12.4 %). There was also a lower incidence of some gastrointestinal AEs in the patient group receiving combination therapy compared with those on donepezil (diarrhoea: 4.5 versus 8.5 %; faecal incontinence: 2.0 versus 5.0 %; nausea: 0.5 versus 3.5 %). AEs that occurred in at least 5 % of the memantine combination group and with an incidence of at least twice that of the donepezil monotherapy group were confusion (7.9 versus 2.0 %; p=0.01) and headache (6.4 versus 2.5 %; p=0.09). Constipation was also more frequent in patients on combination therapy (3.0 versus 1.5 %).

The incidence of AEs was reported to be similar in mild-to-moderate patients treated with memantine plus ChEIs and in those receiving ChEI monotherapy.51 AEs occurring in more than 5 % of combination-treated patients included falls, accidental injury, agitation, dizziness, influenza-like symptoms, depression, gait abnormalities, diarrhoea, confusion, upper respiratory tract infection, fatigue and hypertension. The rate of discontinuation due to AEs was also similar in combination (6 %) and monotherapy (7.9 %) groups. Laboratory tests, vital sign measurements, or electrocardiogram (ECG) parameters showed no clinically significant group differences.

The proportion of participants having a clinically significant weight increase, however, was greater in the memantine combination (9.7 %) than in the ChEI monotherapy group (5.0 %) in a study of combined treatment with memantine and rivastigmine in moderate-to-severe AD patients there was a slight weight loss on rivastigmine alone followed by a slight regain in weight on combined therapy.52

The addition of memantine to rivastigmine was well tolerated and only one treatment-related AE was reported in a study of moderate-to-severe AD patients.53 Other studies adding memantine to rivastigmine, found no significant differences in tolerability and safety between combination and monotherapy groups.52,54

Other Options of Combination Therapy in Alzheimer’s Disease

During the past decade, despite an enormous scientific effort, a disease-modifying therapy able to delay or halt the progression of AD has not been forthcoming. Numerous drugs aimed at interfering with the major AD pathophysiological pathways have entered research phases, and different combination treatment strategies have been investigated. Clinical study data on combination therapy options are summarised in Table 2.

It has been proposed that combined treatment with disease-modifying and symptomatic agents will be the optimal therapy for AD patients.49 To date, however, all the Phase III RCTs conducted in AD with this combination approach have failed to show significant clinical benefits over standard therapy. There is still hope that some of the drugs being tested in ongoing trials may be successful.

Anti-amyloid Therapy

Anti-amyloid therapy has been the major focus of AD research during the past twelve years. Strategies to reduce brain amyloid pathology include active immunisation with different anti-Abeta vaccines, passive immunisation with monoclonal anti-Abeta antibodies, DNA vaccines, inhibitors of the amyloidogenic enzymes γ-secretase and β-secretase, activators of the α-secretase physiologic pathway and several other interventions that can reduce amyloid production, aggregation and deposition or to enhance its clearance. The first anti-amyloid approach was active immunisation with the AN1792 vaccine using synthetic Abeta42 as antigen.49 Unfortunately, the initial Phase II trial was discontinued prematurely because some of the vaccinated patients developed aspetic meningoencephalitis. Post mortem neuropathological studies confirmed a considerable reduction of the amyloid deposition and some effects on tau-related pathology within the brains of some of the immunised patients;47,48 but data on the clinical efficacy remains unclear. A recent follow-up study found that, after 4.6 years of the immunisation with AN1792, those patients originally defined as antibody responders showed a significantly lower functional decline (p=0.015) compared with placebo-treated patients.49

Preliminary clinical data are also available for passive immunisation with humanised monoclonal antibodies against Abeta (bapineuzumab) and intravenous immunoglobulins (IVGs). A Phase II RCT with bapineuzumab found no significant effects in the primary efficacy analysis and suggested potential treatment differences for cognitive and functional endpoints in the subgroup of patients without the Apolipoprotein E (APOE) epsilon4 allele completing the study.50 Treatment with bapineuzumab reduced cortical fibrillar Abeta levels, as measured through carbon-11-labelled Pittsburgh compound B (11C-PIB) retention, compared with baseline and placebo.50 The highest dose of bapineuzumab (2 mg/kg) had to be discontinued owing to the occurrence of adverse events (vasogenic oedema with sulcal effusions and microhaemorrhages with haemosiderin deposits) associated with the treatment dosage and the presence of APOE4.51 Several IVG preparations are under investigation in Phase II–III trials.52 Two exploratory uncontrolled studies reported reduced cerebrospinal fluid (CSF)/increased serum levels of total Abeta and some improvements in cognition in AD patients treated with IVG53 and reduced CSF Abeta levels and cognitive stabilisation in patients with mild AD.54

The development of semagacestat, a gamma-secretase inhibitor,55–57 was recently discontinued because preliminary analysis of two large Phase III trials showed that patients treated with the semagacestat add-on combination therapy compared with those on placebo plus regular anti-dementia treatment showed significant clinical deterioration and had an increased risk of skin cancer.58
Neurodegenerative Disorders

Alzheimer’s Disease

Table 2: Other Combination Therapy Options Investigated in Alzheimer’s Disease – Clinical Studies with Agents Targeting Different Pathophysiological Pathways

<table>
<thead>
<tr>
<th>Pathophysiology Target</th>
<th>Therapeutic Agent (Mechanism of Action)</th>
<th>Combination Therapy Type</th>
<th>Current Status</th>
<th>Main Outcome</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyloid Pathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Active immunisation</td>
<td>AN1792 (Abeta removal)</td>
<td>Add-on Phase II</td>
<td>Discontinued</td>
<td>SAEs, aseptic ME, Unclear Efficacy</td>
<td>Alvarez et al., 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mild-to-moderate AD; n=372; 15 months (interrupted)</td>
<td></td>
<td>ADL function</td>
<td></td>
</tr>
<tr>
<td>• Passive immunisation</td>
<td>Bapineuzumab (Abeta mAb: Abeta removal)</td>
<td>Add-on Phase II</td>
<td>Ongoing (Phase III)</td>
<td>No efficacy</td>
<td>Salloway et al., 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mild-to-moderate AD n=234; 78 weeks</td>
<td></td>
<td>AEs: VE, MH</td>
<td>Rinne et al., 2010</td>
</tr>
<tr>
<td>IVIG: Gammagard, Octagam, Flebogamma (Natural human Abeta Abs)</td>
<td>Add-on Open-label, dose-ranging Mild AD; n=6, 18 months</td>
<td>Ongoing (Phases II–III)</td>
<td>Stabilisation MMSE scores</td>
<td>Reduction of CSF Abeta levels</td>
<td>Dodel et al., 2004</td>
</tr>
<tr>
<td>• γ-secretase/β-secretase inhibitors</td>
<td>Semagacestat (E430139) (γ-secretase inhibitor)</td>
<td>Add-on Phase III RCTs Mild-to-moderate AD; n=2,600; 76 weeks</td>
<td>Discontinued</td>
<td>Clinical worsening Increased risk skin cancer</td>
<td>Alzforum.org, 2012</td>
</tr>
<tr>
<td>• α-secretase activators</td>
<td>Etazolate (EHT0202) (alpha-secretase enhancer)</td>
<td>ChEIs Phase II Mild-to-moderate AD; n=159; 12 weeks</td>
<td>Ongoing Improved ADCS-ADL Dose-dependent AEs</td>
<td>Vellas et al., 2013</td>
<td></td>
</tr>
<tr>
<td>• Amyloid-lowering agents</td>
<td>Tramiprosate (Antifibrillar)</td>
<td>Add-on Phase III RCT Mild-to-moderate AD; n=1,052; 78 weeks</td>
<td>Discontinued</td>
<td>No clinical efficacy Reduced hippocampal atrophy Safe</td>
<td>Aisen et al., 2011</td>
</tr>
<tr>
<td>Tarenflurbil (SALA γ-secretase modulator)</td>
<td>Add-on Phase III Mild AD; n=1,649; 18 months</td>
<td>Discontinued No clinical efficacy</td>
<td>Green et al., 2009 Wilcock et al., 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELND005, Scyllo-inositol (inhibits oligomer formation)</td>
<td>Add-on Phase II Mild-to-moderate AD; n=353; 78 weeks</td>
<td>Inactive No efficacy Reduced CSF Abeta42 Toxicity at high doses. At 250 mg dose, brain ventricular volume showed a small increase (p=0.049), scyllo-inositol concentrations increased in CSF and brain, and CSF Aβ42 decreased compared to placebo (p=0.009)</td>
<td>Salloway et al., 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simvastatin (HMG-CoA reductase inhibitor)</td>
<td>Add-on Phase III Mild-to-moderate AD; n=406; 18 months</td>
<td>Discontinued No clinical efficacy Safe</td>
<td>Sano et al., 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atorvastatin (HMG-CoA reductase inhibitor)</td>
<td>Add-on Phase III Mild-to-moderate AD; n=640; 72 weeks</td>
<td>Discontinued No clinical efficacy Safe</td>
<td>Feldman et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosiglitazone (PPAR-γ agonist) ChEIs</td>
<td>Phase III (2) Mild-to-moderate AD; n=1,496 + 1,485; 48 weeks</td>
<td>Discontinued No clinical efficacy</td>
<td>Harrington et al., 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAU Pathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Tau phosphorylation inhibitors</td>
<td>Divalproex sodium (GSK3β inhibitor)</td>
<td>Add-on Phase III Moderate AD without previous agitation or psychosis; n=313; 24 months</td>
<td>Discontinued</td>
<td>No clinical advantage over monotherapy Greater rates of brain atrophy</td>
<td>Fleischer et al., 2011 Tariot et al., 2011</td>
</tr>
<tr>
<td>Neurotrophic Deficits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mimetic neuropeptides</td>
<td>Cerebrolysin (Neurotrophic-like effects)</td>
<td>Donepezil Phase III Mild-to-moderate AD; n=200; 28 weeks</td>
<td>Ongoing Combination superior to donepezil on global function</td>
<td>Alvarez et al., 2011</td>
<td></td>
</tr>
</tbody>
</table>
Combination Drug Therapy for the Treatment of Alzheimer’s Disease

<table>
<thead>
<tr>
<th>Pathophysiology Target</th>
<th>Therapeutic Intervention</th>
<th>Combination Therapy Type</th>
<th>Study Characteristics</th>
<th>Current Status</th>
<th>Main Outcome</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurotrophic Deficits</td>
<td>MK-677 (GH secretagogue)</td>
<td>Add-on</td>
<td>Phase II; Mild-to-moderate AD; n=563; 12 months</td>
<td>Discontinued</td>
<td>No clinical efficacy</td>
<td>Sevigny et al., 2008</td>
</tr>
<tr>
<td></td>
<td>Xaliproden (5-HT1A receptor agonist)</td>
<td>Add-on</td>
<td>Phase III; Mild-to-moderate AD; n=1,455; 18 months</td>
<td>Discontinued</td>
<td>No clinical efficacy</td>
<td>Martel et al., 2009</td>
</tr>
</tbody>
</table>

Neuroinflammation	NSAIDs	Discontinued	Safety concerns	Aisen et al., 2003		
	Celecoxib (COX-2 inhibitor)	Add-on	Phase III; Mild-to-moderate AD; n=132; 12 months	Discontinued	No clinical efficacy	Soininen et al., 2007
	ibuprofen (Anti-inflammatory)	Add-on	Phase III; Mild-to-moderate AD; n=351; 52 weeks	Discontinued	No clinical efficacy	Pasqualetti et al., 2009

Oxidative Stress	Omega-3 fatty acids	Definitive	No clinical efficacy	Quinn et al., 2010		
	DHA/EPA (Omega-3 fatty acids)	Add-on	Phase III; Mild-to-moderate AD; n=204; 6 months (16 extent)	Definitive	No clinical efficacy	Freund-Levi et al., 2006
	DHA (Omega-3 fatty acid)	Add-on	Phase III; Mild-to-moderate AD; n=402; 18 months	Definitive	No clinical efficacy	Sano et al., 1997

| Vitamins | Folate/B6/B12 (Reduction homocysteine) | Add-on | Phase III; Mild-to-moderate AD; n=409; 18 months | Definitive | No effects on cognition | Rigaud et al., 2003 |
| | Vitamin E, Selegiline (Antioxidant, MAOI) | Combined versus monotherapy | Phase III; Moderate AD; n=341; 2 years | Definitive | No superiority of combination to monotherapy | Sano et al., 1997 |

| Excitotoxicity | PBT2 (inhibits metal-protein toxicity) | Ongoing | Dose-dependent effects on executive function, CSF Abeta | Lannfelt et al., 2008 |

| Metabolic Alterations | Insulin (Enhances insulin signalling) | Add-on | Phase II; Early AD; n=78; 12 weeks | Acceptable tolerance | Faux et al., 2010 |

| HRT (Restores hormonal deficits) | Rivastigmine (RCT) | Discontinued | No significant superiority of the combination | Rigaud et al., 2003 |

| Neurotransmitter Deficits | Atomoxetine (NA re-uptake inhibitor) | Phase II in MCI | No clinical efficacy | Mols et al., 2009 |

Ab* = antibodies; Abeta = beta-amyloid; AD = Alzheimer’s disease; ADCS-ADL = AD Cooperative Study-Activities of Daily Living Inventory; AE* = adverse events; CGI-C = clinician’s global impression of change; ChEIs = cholinesterase inhibitors; COX-2 = cyclo-oxygenase-2; CSF = cerebrospinal fluid; DHA = docosahexaenoic acid; DM-2 = type 2 diabetes; EPA = eicosapentaenoic acid; GH = growth hormone; GSK3-beta = glycogen synthetase kinase 3 beta; HMG-CoA = 3-hydroxy-3-methyl-glutaryl-coenzyme A; HRT = hormone replacement therapy; IGF-I = insulin-like growth factor type I; IVIG = intravenous immunoglobulins; MAOI = monoamine oxidase inhibitor; mAb = monoclonal antibodies; MCI = mild cognitive impairment; ME = meningiomas; MMSE = mini-mental state examination; NA = noradrenaline; NGF = nerve growth factor; NSAIDS = non-steroidal anti-inflammatory drugs; PPARG = peroxisome proliferator-activated receptor-gamma; RCT = randomised-controlled clinical trial; SAEs = severe adverse events; SALA = selective abeta42-lowering agent; VE = vasogenic oedema.
Neurodegenerative Disorders Alzheimer’s Disease

A recent report on a Phase II trial with the alpha-secretase enhancer etazolate (EHT0202) showed promising results. Although the study was not powered to show drug efficacy, significant improvements in functioning were reported. Safety and tolerance data were encouraging and support further development of EHT0202.

Several other amyloid-lowering agents were discontinued owing to the lack of efficacy at the Phase III stage, including the fibrillar compound tamiprosate, the selective Abeta42 lowering agent tarenflurbil, the two statins simvastatin and atorvastatin and the pirenixase proliferation-activated receptor-gamma agonist rosiglitazone. A Phase II trial with the scyllo-inositol (ELND005), a drug-inhibiting Abeta oligomer formation, reported acceptable growth hormone secretagogue MK-677 and Xaliproden, a 5-HT1A receptor agonist with NGF-like activity, showed no clinical efficacy; in terms of improvements in global outcome. Further research into neurotrophic agents have not been studied and may give synergistic or additive effects and a more detailed assessment of its potential benefits on motor impairment in end-stage disease.

Interventions Based on Excitotoxicity, Metabolic and Neurotransmitter Alterations

An early Phase II study was completed with PBT2, a metal chelator drug intended to reduce toxicity of metal-protein complexes like those formed by Abeta oligomers with copper and zinc. In early AD patients, the combination of PBT2 with ChEIs dose-dependently improved executive functions and reduced CSF Abeta42 levels significantly compared with ChEs alone. These positive findings are preliminary and need further confirmation. Treatments for metabolic alterations have had mixed results. Hormone replacement therapy did not enhance the clinical response to rivastigmine when administered to menopausal women with AD. However, a recent open-label study found that add-on treatment with insulin reduced the rates of cognitive and functional decline significantly compared with regular therapy without insulin in patients with mild-to-moderate AD and diabetes type 2. Finally, the combined treatment with atorvastatin (a noradrenaline re-uptake inhibitor) and ChEIs showed no effects in improving the clinical efficacy of monotherapy in mild to moderately severe AD.

Conclusions and Future Developments

At present, combined drug therapy with memantine and ChEIs represents the best available option for the effective treatment of moderate-to-severe AD patients. This therapeutic approach showed higher clinical efficacy than monotherapy with similar safety and tolerability. Results of RCTs and observational studies support the benefits of this combination therapy to retard the rate of cognitive and functional deterioration, to reduce the severity and emergence of neuropsychiatric symptoms such as agitation and psychosis or slow cognitive or functional decline in patients with moderate AD, and was associated with significant toxic effects. Furthermore, valproate-treated patients showed greater loss in hippocampal and whole-brain volume, greater ventricular expansion (p=0.001) and a more rapid decline of MMSE scores (p=0.037) at month 12.

Neurotrophic Agents

A downregulation of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and IGF-I receptors has been reported in AD and mild cognitive impairment (MCI). These reductions in neurotrophic signalling influence the degeneration of basal forebrain cholinergic neurons and constitute an early event in AD pathogenesis. Neurotrophic alterations are also associated with Abeta- and tau-related pathology, apoptosis, reduced neural plasticity, synaptic loss and cognitive impairment. Therefore, drugs and mimetic peptides able to increase brain neurotrophic signalling are a promising alternative for AD treatment.

Three studies using this approach were recently published. The growth hormone secretagogue MK-677 and Xaliproden, a S-HT1A receptor agonist with NGF-like activity, showed no clinical efficacy, whereas combined treatment with donepezil and the peptideergic drug cerebrolysin showed some advantage over donepezil monotherapy in terms of improvements in global outcome. Further research into this combined treatment is recommended.

Anti-inflammatory Drugs and Anti-oxidative Factors

All Phase III trials on combination therapy with anti-inflammatory drugs have failed to show clinical efficacy. Naproxen and rofecoxib were found to be advantageous over donepezil monotherapy in the combined treatment of AD. Omega-3 fatty acids, group B vitamins and vitamin E were also devoid of efficacy in combination trials.

Although most add-on trials with potential disease-modifying drugs failed, there are data to suggest that success with this approach may be achieved in future, particularly for anti-amyloid strategies and neurotrophic agents. Anti-Abeta vaccines, cerebrolysin and insulin, may be potentially beneficial agents that warrant further investigation. Combinations of anti-amyloid and/or anti-tau interventions with neurotrophic agents have not been studied and may give synergistic or additive effects. Future drug studies in prodromal or early AD stages will require long follow-up periods to demonstrate efficacy because the rates of disease progression and clinical deterioration of these patients are highly variable and rather slow.
Combination Drug Therapy for the Treatment of Alzheimer's Disease

89. Tariot PN, Schneider LS, Cummings J, et al., Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease, Arch Gen Psychiatry, 2011;68:1853–61.