Intra-operative Imaging Techniques During Surgical Management of Gliomas

US Neurology, 2011;7(2):163-8 DOI:


The goal of glioma surgery is to maximize tumor removal while preserving existing function. Intra-operative imaging techniques play an important part in achieving this goal. This article surveys those techniques and discusses the indications, advantages, and drawbacks of each. Structural techniques such as intra-operative magnetic resonance imaging (MRI), ultrasound, diffusion tensor imaging, and 5-aminolevulinic acid staining offer anatomic information. Functional techniques such as functional MRI, magnetoencephalography, and transcranial magnetic stimulation provide information about the functionality of brain regions. When incorporated into a frameless stereotactical neuronavigation system, these modalities increase both the efficacy and safety of glioma surgery by allowing the surgeon to achieve the most extensive and safe resection possible
Keywords: Frameless stereotactical neuronavigation, 5-aminolevulinic acid, intra-operative ultrasound, intra-operative magnetic resonance imaging, diffusion tensor imaging, magnetoencephalography, transcranial magnetic stimulation, intra-operative imaging, functional magnetic resonance imaging
Disclosure: The authors have no conflicts of interest to declare.
Received: November 01, 2011 Accepted November 10, 2011
Correspondence: Phiroz E Tarapore, MD, Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112. E:

The goal of glioma surgery is to maximize tumor resection while preventing a new post-operative neurologic deficit. For both low- and high-grade gliomas, increased extent of resection correlates with improved progression-free survival as well as with overall survival.1–5 While some features of brain tumors can be visualized, in general, most aspects of infiltrative gliomas cannot be clearly seen by direct vision, thus making it difficult to evaluate when the resection is complete. Furthermore, identifying deeper structures in the trajectory of resection is critical to preserving subcortical white matter tracts and blood vessels. For these reasons, recent advances have made intra-operative imaging a cornerstone of modern glioma neurosurgery.

Neuroimaging techniques fall into two broad groups: structural and functional. Techniques such as frameless stereotaxy, intra-operative magnetic resonance imaging (MRI), ultrasound, diffusion tensor imaging (DTI), and 5-aminolevulinic acid (5-ALA) staining provide anatomic and structural information, helping to identify normal structures and tumoral regions. Functional techniques such as functional MRI (fMRI), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) yield information about the functionality of given brain regions. Typically, functional imaging data are acquired pre-operatively and applied intra-operatively. Depending on the technique, navigational data are acquired either pre-operatively or intra-operatively, and applied intra-operatively. This article discusses both categories of neuroimaging, since they both have intra-operative applications and are critical to the successful management of gliomas.

Frameless Stereotaxy
Frameless stereotactical neuronavigation systems are the mainstay of modern image-guided neurosurgery.6 Introduced in the 1980s, frameless stereotactical neuronavigation allows the surgeon to navigate in three dimensions within the anatomy of a specific patient in real time, making use of images that are acquired pre-operatively (see Figure 1). This technique depends on accurate co-registration between the patient and the scan. An infrared emitter and receiver system records the coordinates of each of the fiducial points on the patient’s head or the head shape in 3D space with respect to a reference arc next to the head. The software then calculates the position of the patient in space and co-registers the patient to the scan. Thereafter, touching the probe anywhere on or in the patient’s head will cause the neuronavigational system to display the relevant slices of the scan, with a crosshair indicating the position of the probe tip.

Frameless stereotactical neuronavigation has greatly improved the accuracy and safety of glioma surgery. It effectively allows a resection to be carried up to its safe margin. In so doing, this technique has been shown to improve the extent of resection and to reduce post-operative deficits.7–10 Additionally, it enables the surgeon to tailor craniotomies with greater accuracy, allowing for smaller exposures, shorter incisions, and reduced morbidity.11 Finally, as stated previously, frameless stereotactical neuronavigation forms the platform by which pre-operative functional imaging data may be applied intra-operatively.

  1. Smith JS, Chang EF, Lamborn KR, et al., Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas, J Clin Oncol, 2008;26:1338–45.
  2. Claus EB, Horlacher A, Hsu L, et al., Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance, Cancer, 2005;103:1227–33.
  3. Ahmadi R, Dictus C, Hartmann C, et al., Long-term outcome and survival of surgically treated supratentorial low-grade glioma in adult patients, Acta Neurochir (Wien), 2009;151:1359–65.
  4. Chaichana KL, McGirt MJ, Laterra J, et al., Recurrence and malignant degeneration after resection of adult hemispheric low-grade gliomas, J Neurosurg, 2010;112:10–7.
  5. Sanai N, Polley MY, McDermott MW, et al., An extent of resection threshold for newly diagnosed glioblastomas, J Neurosurg, 2011;115:3–8.
  6. Warnke PC, Stereotactic volumetric resection of gliomas, Acta Neurochir Suppl, 2003;88:5–8.
  7. Krishnan R, Raabe A, Hattingen E, et al., Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome, Neurosurgery, 2004;55:904–14; discussion 914–5.
  8. Kurimoto M, Hayashi N, Kamiyama H, et al., Impact of neuronavigation and image-guided extensive resection for adult patients with supratentorial malignant astrocytomas: a single-institution retrospective study, Minim Invasive Neurosurg, 2004;47:278–83.
  9. Reithmeier T, Krammer M, Gumprecht H, et al., Neuronavigation combined with electrophysiological monitoring for surgery of lesions in eloquent brain areas in 42 cases: a retrospective comparison of the neurological outcome and the quality of resection with a control group with similar lesions, Minim Invasive Neurosurg, 2003;46:65–71.
  10. Wu JS, Zhou LF, Tang WJ, et al., Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts, Neurosurgery, 2007;61:935–48; discussion 948–39.
  11. Sanai N, Berger MS, Intraoperative stimulation techniques for functional pathway preservation and glioma resection, Neurosurg Focus, 2010;28:E1.
  12. Black PM, Alexander E, 3rd, Martin C, et al., Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit, Neurosurgery, 1999;45:423–31; discussion 431–23.
  13. Leuthardt EC, Lim CC, Shah MN, et al., Use of movable highfield- strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: preliminary experience, Neurosurgery, 2011;69:194–205; discussion 205–6.
  14. Hall WA, Liu H, Maxwell RE, Truwit CL, Influence of 1.5-Tesla intraoperative MR imaging on surgical decision making, Acta Neurochir Suppl, 2003;85:29–37.
  15. Nimsky C, Intraoperative MRI in glioma surgery: proof of benefit?, Lancet Oncol, 2011;12:982–3.
  16. Kubben PL, Ter Meulen KJ, Schijns OE, et al., Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review, Lancet Oncol, 2011;12:1062–70.
  17. Hatiboglu MA, Weinberg JS, Suki D, et al., Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis, Neurosurgery, 2009;64:1073–81; discussion 1081.
  18. Senft C, Seifert V, Hermann E, et al., Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery, Neurosurgery, 2008;63(4 Suppl. 2):257–66; discussion 266–57.
  19. Nimsky C, Fujita A, Ganslandt O, et al., Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging, Neurosurgery, 2004;55:358–70; discussion 370–1.
  20. Pamir MN, Ozduman K, Dincer A, et al., First intraoperative, shared-resource, ultrahigh-field 3-Tesla magnetic resonance imaging system and its application in low-grade glioma resection, J Neurosurg, 2010;112:57–69.
  21. Hirschberg H, Samset E, Hol PK, et al., Impact of intraoperative MRI on the surgical results for high-grade gliomas, Minim Invasive Neurosurg, 2005;48:77–84.
  22. Senft C, Bink A, Heckelmann M, et al., Glioma extent of resection and ultra-low-field iMRI: interim analysis of a prospective randomized trial, Acta Neurochir Suppl, 2011;109:49–53.
  23. Senft C, Bink A, Franz K, et al., Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial, Lancet Oncol, 2011;12:997–1003.
  24. Rubin JM, Dohrmann GJ, Use of ultrasonically guided probes and catheters in neurosurgery, Surg Neurol, 1982;18:143–8.
  25. Unsgaard G, Rygh OM, Selbekk T, et al., Intra-operative 3D ultrasound in neurosurgery, Acta Neurochir (Wien), 2006;148:235–53; discussion 253.
  26. Nikas DC, Hartov A, Lunn K, et al., Coregistered intraoperative ultrasonography in resection of malignant glioma, Neurosurg Focus, 2003;14:e6.
  27. Coenen VA, Krings T, Weidemann J, et al., Sequential visualization of brain and fiber tract deformation during intracranial surgery with three-dimensional ultrasound: an approach to evaluate the effect of brain shift, Neurosurgery, 2005;56(1 Suppl.):133–41; discussion 133–41.
  28. Stummer W, Stocker S, Wagner S, et al., Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence, Neurosurgery, 1998;42:518–25; discussion 525–6.
  29. Kriegmair M, Baumgartner R, Knuchel R, et al., Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence, J Urol, 1996;155:105–9; discussion 109–10.
  30. Stummer W, Stocker S, Novotny A, et al., In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid, J Photochem Photobiol B, 1998;45:160–9.
  31. Fritsch C, Becker-Wegerich PM, Schulte KW, et al., [Photodynamic therapy and breast-plasty of a extensive superficial trunk skin basalioma of the breast. An effective combination therapy with photodynamic diagnosis], Hautarzt, 1996;47:438–42. Article in German.
  32. Stummer W, Novotny A, Stepp H, et al., Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients, J Neurosurg, 2000;93:1003–13.
  33. Stummer W, Pichlmeier U, Meinel T, et al., Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, Lancet Oncol, 2006;7:392–401.
  34. Stepp H, Beck T, Pongratz T, et al., ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment, J Environ Pathol Toxicol Oncol, 2007;26:157–64.
  35. Stummer W, Tonn JC, Mehdorn HM, et al., Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article, J Neurosurg, 2011;114:613–23.
  36. Abou-Khalil B, An update on determination of language dominance in screening for epilepsy surgery: the Wada test and newer noninvasive alternatives, Epilepsia, 2007;48:442–55.
  37. Berman JI, Berger MS, Chung SW, et al., Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging, J Neurosurg, 2007;107:488–94.
  38. Berman JI, Berger MS, Mukherjee P, Henry RG, Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas, J Neurosurg, 2004;101:66–72.
  39. Talos IF, Zou KH, Kikinis R, Jolesz FA, Volumetric assessment of tumor infiltration of adjacent white matter based on anatomic MRI and diffusion tensor tractography, Acad Radiol, 2007;14:431–6.
  40. Henry RG, Berman JI, Nagarajan SS, et al., Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping, Neuroimage, 2004;21:616–22.
  41. Yu CS, Li KC, Xuan Y, et al., Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment, Eur J Radiol, 2005;56:197–204.
  42. Werring DJ, Clark CA, Parker GJ, et al., A direct demonstration of both structure and function in the visual system: combining diffusion tensor imaging with functional magnetic resonance imaging, Neuroimage, 1999;9:352–61.
  43. Nagarajan S, Kirsch H, Lin P, et al., Preoperative localization of hand motor cortex by adaptive spatial filtering of magnetoencephalography data, J Neurosurg, 2008;109:228–37.
  44. Edwards E, Nagarajan SS, Dalal SS, et al., Spatiotemporal imaging of cortical activation during verb generation and picture naming, Neuroimage, 2010;50:291–301.
Keywords: Frameless stereotactical neuronavigation, 5-aminolevulinic acid, intra-operative ultrasound, intra-operative magnetic resonance imaging, diffusion tensor imaging, magnetoencephalography, transcranial magnetic stimulation, intra-operative imaging, functional magnetic resonance imaging